Watching a vertebrate brain learn and behave in a virtual environment

观察脊椎动物大脑在虚拟环境中学习和行为

基本信息

  • 批准号:
    8704392
  • 负责人:
  • 金额:
    $ 84.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-30 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION Abstract: In order to study the neural basis of navigation, learning, and memory, it is important to simultaneously record the activity of large populations of neurons involved in execution of behavior. This has been difficult or impossible in awake, freely moving preparations and the anesthetics and paralytics used to facilitate recordings often alter or abolish the relevant behaviors. I propose to establish a fictive swimming assay that allows paralyzed larval zebrafish to navigate through- and interact with a virtual environment. The sensory feedback provided to the animals will consist of visual cues through video projection screens and water flow provided by a computer controlled valve system. The fish are allowed to control these stimuli via activity in their motor-neurons recorded by a set of external suction electrodes. This arrangement makes it possible for immobilized fish to navigate a virtual environment entirely through power of activity in their motorneurons. As a first step we will combine this assay with 2-photon laser-scanning microscopy and allow transgenic fish lines that express genetically encoded calcium indicators in all neurons to navigate through virtual environments while neuronal activity is monitored. The small size and perfect translucence of the larval zebrafish provides in principle no barrier or restriction to these recordings and thus we have access to the whole brain at single cell resolution during these behavioral tasks. We can thus independently monitor the activities of hundreds or thousands of neurons as animals navigate their virtual worlds. As a subsequent step we will implement different learning assays that the animals have to execute in this virtual environment. In principle this will allow us to follow the flow of neural information in a single animal, before, during and after specific training sessions. The large volumes of resulting data will be analyzed and distilled with automated algorithms and the results used to sketch out potential models of how animals store information in neural networks in order to generate adapted behaviors. Subsequently, we can apply specific manipulations using genetically encoded optic tools for activating and silencing targeted subsets of neurons to test and develop these emerging theories. This platform will offer an unprecedented ability to track and manipulate the large- and smallscale activity patterns that underlie innate as well as learned behaviors.
描述 摘要: 为了研究导航、学习和记忆的神经基础,重要的是 同时记录参与执行的大量神经元的活动, 行为这在清醒的、自由活动的准备工作中是困难或不可能的, 用于促进记录的麻醉剂和麻痹剂经常改变或取消相关的 行为。我建议建立一个虚构的游泳试验, 在虚拟环境中导航并与之互动。感官反馈提供给 这些动物将通过视频投影屏幕和水流提供视觉提示 由计算机控制的阀门系统。鱼可以通过活动来控制这些刺激 在他们的运动神经元中,通过一组外部抽吸电极记录。这种布置 使固定的鱼完全通过能量在虚拟环境中导航成为可能。 运动神经元的活动。 作为第一步,我们将联合收割机与双光子激光扫描显微镜结合, 在所有神经元中表达遗传编码的钙指示剂的转基因鱼系, 在虚拟环境中导航,同时监测神经元活动。小尺寸和 斑马鱼幼鱼的完全透明性原则上不提供这些障碍或限制。 记录,因此我们可以在这些过程中以单细胞分辨率访问整个大脑。 行为任务因此,我们可以独立地监测数百或数千人的活动, 神经元就像动物在虚拟世界中导航一样。 作为后续步骤,我们将实施不同的学习试验,动物必须 在这个虚拟的环境中。原则上,这将使我们能够跟踪神经元的流动, 在特定训练期之前、期间和之后,在单个动物中的信息。 将使用自动算法分析和提取大量由此产生的数据, 这些结果被用来勾勒出动物如何在神经系统中存储信息的潜在模型, 网络以产生适应性行为。随后,我们可以应用具体的 使用基因编码的光学工具激活和沉默靶向亚群的操作 来测试和发展这些新兴的理论。 该平台将提供前所未有的能力来跟踪和操纵大型和小型 这些活动模式是先天行为和后天行为的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Florian Engert其他文献

Florian Engert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Florian Engert', 18)}}的其他基金

Genetic and neural mechanisms underlying emerging social behavior in zebrafish
斑马鱼新兴社会行为的遗传和神经机制
  • 批准号:
    10306905
  • 财政年份:
    2021
  • 资助金额:
    $ 84.5万
  • 项目类别:
Sensorimotor processing, decision making, and internal states: towards a realistic multiscale circuit model of the larval zebrafish brain
感觉运动处理、决策和内部状态:建立幼虫斑马鱼大脑的真实多尺度电路模型
  • 批准号:
    9444232
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:
Sensorimotor processing, decision making, and internal states: towards a realistic multiscale circuit model of the larval zebrafish brain
感觉运动处理、决策和内部状态:建立幼虫斑马鱼大脑的真实多尺度电路模型
  • 批准号:
    10241477
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:
The Heart and the Mind: An Integrative Approach to Brain-Body Interactions in the Zebrafish
心脏和思想:斑马鱼脑体相互作用的综合方法
  • 批准号:
    10525427
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:
The Heart and the Mind: An Integrative Approach to Brain-Body Interactions in the Zebrafish
心脏和思想:斑马鱼脑体相互作用的综合方法
  • 批准号:
    10686975
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:
Admin Core
管理核心
  • 批准号:
    10686976
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:
Sensorimotor processing, decision making, and internal states: towards a realistic multiscale circuit model of the larval zebrafish brain
感觉运动处理、决策和内部状态:建立幼虫斑马鱼大脑的真实多尺度电路模型
  • 批准号:
    9570757
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:
Admin Core
管理核心
  • 批准号:
    10525428
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:
What is going on in the fish's brain? Characterization and Modeling of Neural Dynamics (CNS and ANS and ICNS)
鱼的大脑里发生了什么?
  • 批准号:
    10686992
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:
What is going on in the fish's brain? Characterization and Modeling of Neural Dynamics (CNS and ANS and ICNS)
鱼的大脑里发生了什么?
  • 批准号:
    10525434
  • 财政年份:
    2017
  • 资助金额:
    $ 84.5万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 84.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了