Functional Imaging and Resting State Connectivity in Human Spinal Cord at 7 Tesla
7 特斯拉时人体脊髓的功能成像和静息状态连接
基本信息
- 批准号:8635089
- 负责人:
- 金额:$ 8.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-15 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAffectAgeArchitectureBiomedical EngineeringBrainCerebrospinal FluidCervicalCervical spinal cord structureCervical spineCommunitiesComplementComputersDataDeglutitionDependenceDevelopmentDiseaseEarly DiagnosisEtiologyExhibitsFailureFrequenciesFunctional ImagingFunctional Magnetic Resonance ImagingGoalsHumanHypercapniaImageInjuryInvestigationKnowledgeLifeMagnetic Resonance ImagingMeasuresMethodologyMethodsMonitorMovementMultiple SclerosisNeuraxisNeuroanatomyNeuronal PlasticityNeurosciencesNoiseOperative Surgical ProceduresPaperPathologyPatientsPatternPhasePhysiologic pulsePopulationProtocols documentationRecoveryRecovery of FunctionRelative (related person)ReportingReproducibilityResearchResolutionRespirationRestScientistSeminalSensitivity and SpecificitySignal TransductionSiteSpinalSpinal CordSpinal Cord DiseasesSpinal Cord PlasticitySpinal cord injuryStimulusTechniquesTrainingTranslatingTransverse MyelitisValidationWeightWorkage relatedbaseblood oxygen level dependentcohortcomputerized data processingdata acquisitionexperiencefield studygray matterin vivoinnovationinsightneural circuitneuroimagingnovelpublic health relevancerepairedresponseskillsspinal cord imaging
项目摘要
DESCRIPTION (provided by applicant): This proposal aims to (1) develop and evaluate novel methodologies for functional magnetic resonance imaging (fMRI) of the human cervical spinal cord at ultra-high field (7 Tesla), and (2) non-invasively detect and characterize functional networks in the human cervical spinal cord. These methods may be used clinically to establish the extent of spinal cord injuries and to monitor the progression of functional recovery afterwards, and may also facilitate earlier detection of central nervous system pathologies such as multiple sclerosis. We propose to develop 7T fMRI to detect and quantify low-frequency fluctuations in baseline BOLD (blood oxygenation level dependent) signals as indicators of resting state functional connectivity in spinal gray matter. To date, over 3500 studies have used similar fMRI approaches to study functional connectivity in the brain, and have provided compelling evidence that low-frequency BOLD signal fluctuations are inherent in normal, healthy brains and represent an important level of organization of cortical function. However, to date no corresponding studies have conclusively demonstrated similar low-frequency correlations in spinal gray matter. The precise functioning of the spinal cord in normal and pathological populations remains poorly understood even though studies of functional connectivity and spinal cord plasticity using methods other than MRI have been topics of intense research for the past two decades. The scarcity of spinal fMRI studies mainly reflects the technical difficulties of performing fMRI in the spinal cord, the failure to develop appropriate methods and coils, and the need for higher spatial resolution and greater sensitivity for imaging the spinal cord compared to the brain. We hypothesize that the proposed technical advances can be used to detect and characterize functional connectivity in the cervical spinal cord and changes that occur with injury, recovery and repair, and that these measures will complement information from other functional measures including task-based fMRI studies. We propose to address the need for high spatial resolution and greater BOLD sensitivity by using an ultra-high field (7 Tesla) scanner and a dedicated 16-channel cervical spine coil to develop (Aim 1) and validate (Aim 2) novel fMRI acquisition and data correction protocols. The applicant is a computer/biomedical engineer, so didactic training during the K99 phase is focused on neuroscience and neuroanatomy to develop the skills required for the R00 phase, namely interpretation of resting state spinal networks in healthy controls (Aim 3) and subjects with cervical spondylotic myelopathy (Aim 4). The higher signal-to-noise ratio and BOLD contrast from 7T fMRI have already shown significant advantages over lower field studies for detecting activation and connectivity at high spatial resolution in the brain, and parallel coil arrays permit faster image acquisitions. Thus, ultra-high field MRI is uniquely poised to provide insights into human spinal cord function that are not possible in practice at lower fields. The applicant's long term goal is o become an independent imaging scientist specializing in functional imaging of the brain and spinal cord and the development of advanced neuroimaging methods.
DESCRIPTION (provided by applicant): This proposal aims to (1) develop and evaluate novel methodologies for functional magnetic resonance imaging (fMRI) of the human cervical spinal cord at ultra-high field (7 Tesla), and (2) non-invasively detect and characterize functional networks in the human cervical spinal cord. These methods may be used clinically to establish the extent of spinal cord injuries and to monitor the progression of functional recovery afterwards, and may also facilitate earlier detection of central nervous system pathologies such as multiple sclerosis. We propose to develop 7T fMRI to detect and quantify low-frequency fluctuations in baseline BOLD (blood oxygenation level dependent) signals as indicators of resting state functional connectivity in spinal gray matter. To date, over 3500 studies have used similar fMRI approaches to study functional connectivity in the brain, and have provided compelling evidence that low-frequency BOLD signal fluctuations are inherent in normal, healthy brains and represent an important level of organization of cortical function. However, to date no corresponding studies have conclusively demonstrated similar low-frequency correlations in spinal gray matter. The precise functioning of the spinal cord in normal and pathological populations remains poorly understood even though studies of functional connectivity and spinal cord plasticity using methods other than MRI have been topics of intense research for the past two decades. The scarcity of spinal fMRI studies mainly reflects the technical difficulties of performing fMRI in the spinal cord, the failure to develop appropriate methods and coils, and the need for higher spatial resolution and greater sensitivity for imaging the spinal cord compared to the brain. We hypothesize that the proposed technical advances can be used to detect and characterize functional connectivity in the cervical spinal cord and changes that occur with injury, recovery and repair, and that these measures will complement information from other functional measures including task-based fMRI studies. We propose to address the need for high spatial resolution and greater BOLD sensitivity by using an ultra-high field (7 Tesla) scanner and a dedicated 16-channel cervical spine coil to develop (Aim 1) and validate (Aim 2) novel fMRI acquisition and data correction protocols. The applicant is a computer/biomedical engineer, so didactic training during the K99 phase is focused on neuroscience and neuroanatomy to develop the skills required for the R00 phase, namely interpretation of resting state spinal networks in healthy controls (Aim 3) and subjects with cervical spondylotic myelopathy (Aim 4). The higher signal-to-noise ratio and BOLD contrast from 7T fMRI have already shown significant advantages over lower field studies for detecting activation and connectivity at high spatial resolution in the brain, and parallel coil arrays permit faster image acquisitions. Thus, ultra-high field MRI is uniquely poised to provide insights into human spinal cord function that are not possible in practice at lower fields. The applicant's long term goal is o become an independent imaging scientist specializing in functional imaging of the brain and spinal cord and the development of advanced neuroimaging methods.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert L Barry其他文献
Robert L Barry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert L Barry', 18)}}的其他基金
Causal connectivity along the spinal cord using high-resolution 7T fMRI
使用高分辨率 7T fMRI 观察脊髓的因果连接
- 批准号:
10193367 - 财政年份:2021
- 资助金额:
$ 8.88万 - 项目类别:
Spinal cord functional connectivity as a biomarker of spinal cord dysfunction
脊髓功能连接作为脊髓功能障碍的生物标志物
- 批准号:
10375355 - 财政年份:2019
- 资助金额:
$ 8.88万 - 项目类别:
Functional Imaging and resting state connectivity in human spinal cord at 7 Tesla
7 特斯拉下人体脊髓的功能成像和静息状态连接
- 批准号:
9307815 - 财政年份:2016
- 资助金额:
$ 8.88万 - 项目类别:
Functional Imaging and resting state connectivity in human spinal cord at 7 Tesla
7 特斯拉下人体脊髓的功能成像和静息状态连接
- 批准号:
9274397 - 财政年份:2016
- 资助金额:
$ 8.88万 - 项目类别:
Functional Imaging and Resting State Connectivity in Human Spinal Cord at 7 Tesla
7 特斯拉时人体脊髓的功能成像和静息状态连接
- 批准号:
8838114 - 财政年份:2014
- 资助金额:
$ 8.88万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 8.88万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 8.88万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 8.88万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 8.88万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 8.88万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 8.88万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 8.88万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 8.88万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 8.88万 - 项目类别:














{{item.name}}会员




