Multiscale Mathematical Modeling of Cancer Progression
癌症进展的多尺度数学模型
基本信息
- 批准号:8628754
- 负责人:
- 金额:$ 117.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-30 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAntineoplastic AgentsBehaviorBiologicalBreastBreast Cancer CellCancer DetectionCancer ModelCancer Prevention InterventionCancer cell lineCell LineCell ProliferationCell SurvivalCellsClinicClinicalClinical TrialsComputer SimulationContinuing EducationCouplingDataData SetDetectionDiseaseDoxorubicinDrug InteractionsDrug resistanceERBB2 geneEducation and OutreachEducational workshopEpidemiologyEvolutionFundingGame TheoryGene Expression RegulationGenerationsGeneticHealthHealth behavior outcomesHeterogeneityHumanImageImmuneImmunologyImmunotherapyIn VitroIndividualInterventionLaboratory FindingLeadLifeLife StyleMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMeasuresMetabolismMethodsMicroscopyMolecularMolecular GeneticsMolecular ProfilingMolecular TargetMusNanotechnologyNatural ImmunityOutcomePatientsPharmaceutical PreparationsPharmacotherapyPhasePhenotypePredispositionQuality of CareRadiationRadioRegulationResistanceScientistShapesSignal PathwaySignal Transduction PathwayStatistical ModelsSystems BiologyTheoretical modelTherapeuticTimeTissuesTranslatingTyrosine Kinase InhibitorVariantVertebral columnViraladaptive immunitycancer cellcancer preventioncancer riskcell motilityclinical practicecostcytotoxicdata modelingdesigndrug discoveryfitnesshormone therapyimage processingimprovedmalignant breast neoplasmmathematical modelmolecular markermolecular oncologyneoplastic cellnon-geneticnovelnovel strategiespredictive modelingprogramsradiation resistanceresponsesmall moleculetheoriestraittumortumor growthtumor microenvironmenttumor progression
项目摘要
DESCRIPTION (provided by applicant): The overarching theme of our application is to quantify the impact of cancer cell heterogeneity in tumor growth and treatment resistance. It logically extends results from the previous funding period, pointing to phenotypic heterogeneity as key determinant of progression and invasion. We will consider heterogeneity with respect to phenotypic traits (Proliferation, Motility and Metabolism), in the ICBP-43 breast cancer cell line panel and in drug resistant breast, or radiation responsive lung, cancer cell lines. Trait heterogeneity will be quantified primarily by high-content automated microscopy and image processing. Between cell lines, trait variability will be compared as averages and distribution shapes. Within a cell line, ceil-to-cell variability (presumably non-genetic) will be represented as subpopulations by statistical modeling, e.g., bayesian information criteria and clustering algorithms. To estimate adaptability, we will measure trait variation in response to perturbations mimicking tumor microenvironment conditions. This large dataset (3 traits in >50 lines under >10 perturbations) will be input to mathematical and computational predictive models, tracking the fate of individual cancer cells and the microenvironment in space-time during tumor growth. With the experimental component, this suite of theoretical models forms a Center "Backbone" deployed towards three Projects. Project 1 will quantify adaptive advantage in cancer progression by incorporating cell trait heterogeneity data into mathematical and computational models that exploit evolution dynamics and game theory concepts. Project 2 will measure impact of trait heterogeneity and fitness cost in the rise of breast cancer resistance to first- and second-line drugs (doxorubicin, hormone therapy and HER2 tyrosine kinase inhibitors). Project 3 will attempt to improve and/or predict outcomes of radiation treatment in lung cancer cell lines by coupling experimentally defined radio-phenotype heterogeneity to predictive models. Hypotheses/predictions from Projects 1-3 will be validated in vitro and in mouse tumors, by iteration loops of experimentation and theory. Finally, we will continue education/outreach efforts, e.g., hands-on cancer modeling workshops, to attract physical and biological scientists, especially the brightest of the new generations.
描述(由申请人提供):我们申请的首要主题是量化癌细胞异质性对肿瘤生长和治疗抗性的影响。它在逻辑上扩展了前一个资助期的结果,指出表型异质性是疾病进展和侵袭的关键决定因素。我们将考虑ICBP-43乳腺癌细胞系组和耐药乳腺癌或放射反应性肺癌细胞系中表型性状(增殖、运动和代谢)的异质性。性状异质性将主要通过高内容自动显微镜和图像处理进行量化。在细胞系之间,将性状变异性作为平均值和分布形状进行比较。在细胞系内,细胞间变异性(推测为非遗传性)将通过统计建模表示为亚群,例如,最佳信息准则和聚类算法。为了估计适应性,我们将测量响应于模拟肿瘤微环境条件的扰动的性状变化。这个大型数据集(在>10次扰动下,>50个品系中的3个性状)将被输入到数学和计算预测模型中,跟踪肿瘤生长期间单个癌细胞的命运和时空中的微环境。通过实验部分,这套理论模型形成了一个中心“骨干”,部署在三个项目中。项目1将通过将细胞性状异质性数据纳入利用进化动力学和博弈论概念的数学和计算模型来量化癌症进展中的适应性优势。项目2将测量乳腺癌对一线和二线药物(多柔比星,激素治疗和HER 2酪氨酸激酶抑制剂)耐药性上升的性状异质性和健身成本的影响。项目3将尝试通过将实验定义的放射表型异质性与预测模型相结合来改善和/或预测肺癌细胞系放射治疗的结果。项目1-3的假设/预测将通过实验和理论的迭代循环在体外和小鼠肿瘤中得到验证。最后,我们将继续开展教育/外展工作,例如,动手癌症建模研讨会,以吸引物理和生物科学家,特别是最聪明的新一代。
项目成果
期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid models of tumor growth.
- DOI:10.1002/wsbm.102
- 发表时间:2011-01
- 期刊:
- 影响因子:7.9
- 作者:Rejniak, Katarzyna A.;Anderson, Alexander R. A.
- 通讯作者:Anderson, Alexander R. A.
Homeostatic imbalance in epithelial ducts and its role in carcinogenesis.
- DOI:10.6064/2012/132978
- 发表时间:2012
- 期刊:
- 影响因子:3.2
- 作者:Rejniak KA
- 通讯作者:Rejniak KA
A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure.
上皮腺泡发育的计算研究:一、中空结构形成的充分条件。
- DOI:10.1007/s11538-007-9274-1
- 发表时间:2008
- 期刊:
- 影响因子:3.5
- 作者:Rejniak,KatarzynaA;Anderson,AlexanderRA
- 通讯作者:Anderson,AlexanderRA
Microfluidic switching system for analyzing chemotaxis responses of wortmannin-inhibited HL-60 cells.
- DOI:10.1007/s10544-007-9158-z
- 发表时间:2008-08
- 期刊:
- 影响因子:2.8
- 作者:Liu Y;Sai J;Richmond A;Wikswo JP
- 通讯作者:Wikswo JP
Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.
- DOI:10.1371/journal.pone.0009636
- 发表时间:2010-03-10
- 期刊:
- 影响因子:3.7
- 作者:Potdar AA;Jeon J;Weaver AM;Quaranta V;Cummings PT
- 通讯作者:Cummings PT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vito Quaranta其他文献
Vito Quaranta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vito Quaranta', 18)}}的其他基金
Phenotype Heterogeneity and Dynamics in SCLC
SCLC 的表型异质性和动态
- 批准号:
10375418 - 财政年份:2018
- 资助金额:
$ 117.89万 - 项目类别:
Quantitative Multiscale Imaging to Optimize Cancer Treatment Strategies
定量多尺度成像优化癌症治疗策略
- 批准号:
8703365 - 财政年份:2014
- 资助金额:
$ 117.89万 - 项目类别:
Quantitative Multiscale Imaging to Optimize Cancer Treatment Strategies
定量多尺度成像优化癌症治疗策略
- 批准号:
9131999 - 财政年份:2014
- 资助金额:
$ 117.89万 - 项目类别:
Image Driven Multi-Scale Modeling to Predict Treatment Response in Breast Cancer
图像驱动的多尺度建模来预测乳腺癌的治疗反应
- 批准号:
8664820 - 财政年份:2013
- 资助金额:
$ 117.89万 - 项目类别:
Image Driven Multi-Scale Modeling to Predict Treatment Response in Breast Cancer
图像驱动的多尺度建模来预测乳腺癌的治疗反应
- 批准号:
8920097 - 财政年份:2013
- 资助金额:
$ 117.89万 - 项目类别:
Image Driven Multi-Scale Modeling to Predict Treatment Response in Breast Cancer
图像驱动的多尺度建模来预测乳腺癌的治疗反应
- 批准号:
8476896 - 财政年份:2013
- 资助金额:
$ 117.89万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 117.89万 - 项目类别:
Continuing Grant