Microfluidic platform for stress-induced rapid antibiotic susceptibility testing
用于应激诱导快速抗生素敏感性测试的微流控平台
基本信息
- 批准号:8662693
- 负责人:
- 金额:$ 39.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-17 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAminoglycosidesAnabolismAntibiotic ResistanceAntibiotic TherapyAntibiotic susceptibilityAntibioticsBacteriaBacterial InfectionsBiochemical PathwayBiological AssayBiological ModelsCell DeathCell WallCell physiologyCellsCiprofloxacinClindamycinClinicalClinical MicrobiologyCombined AntibioticsCommunicable DiseasesComplementConsultDNADaptomycinDataDiagnosticDiagnostic ProcedureDiseaseDrug resistanceEffectivenessEnzymesEpidemiologic StudiesErythromycinEvaluationFundingGenerationsGenetic TranscriptionGenetic screening methodGoalsGovernmentGram-Negative BacteriaGram-Positive BacteriaGrowthHigh PrevalenceIonic StrengthsLaboratoriesLeadLiteratureMechanical StressMechanicsMetabolismMethicillinMethicillin ResistanceMethodologyMethodsMicrobeMicrofluidicsMinimum Inhibitory Concentration measurementMolecularMonitorMulti-Drug ResistanceOrganismOxidative StressPathway interactionsPatient NoncompliancePatientsPatternPerformancePersonsPharmacotherapyPhysiciansPredispositionPrevalenceProcessProliferatingProtein BiosynthesisPublic HealthPublishingReagentRegimenReporterResearchResistanceSamplingScientistSpecificitySpecimenStaphylococcus aureusStressSulfonamidesSystemTechniquesTechnologyTestingTetracyclinesTimeVancomycinWorkbacterial resistancebactericidebasebeta-Lactamsbiological adaptation to stressclinical practicecombatcostdrug candidatefield studyimprovedinnovationkillingsnew technologynovelnovel diagnosticspathogenpublic health relevancerapid detectionrapid techniquerepairedresearch studyresistance mechanismresistant strainresponsescreeningshear stressskillsstressorsuccesstooltrend
项目摘要
DESCRIPTION (provided by applicant): Current standard methods for detecting antibiotic susceptibility are based on the ability of the bacteria to proliferate in the presence of antibiotis, and thus these techniques are time-consuming, costly, and insensitive, particularly for evaluation of slow-growing organisms. To develop a truly rapid susceptibility test, one must circumvent the need for growth. We are developing a microfluidic test that interrogates the response of cells to antibiotics in the presence of mechanical and/or soluble stressors and thereby minimizes the time to results. The core of the hypothesis is that by straining the cell, we
induce the cellular repair processes and associated biochemical pathways. These pathways are often targets of antibiotics (e.g., cell wall biosynthesis, protein synthesis, DNA transcription). f the antibiotic hinders those repair processes, the cell will die under the continued application of
stress. We posit that monitoring cell death under stress in the presence of antibiotics can provide phenotypic information in an ultra-rapid time frame allowing physicians to make appropriate antibiotic treatment choices sooner. We envisage that this methodology would complement the existing rapid tests based on molecular diagnostics (e.g., PCR) because it would provide a low-cost rapid method that delivers phenotypic information. While genetic tests provide precise information for epidemiological studies, the high reagent costs, relatively high operator skills required, and limited clinical utility continue to limit widespread routine use. Furthermore, the molecular diagnostics suffer from a high number of false positives and unacceptable performance in non-sterile specimens (e.g., polymicrobial samples). As our method could be automated and is based on phenotypic changes, we believe it is superior as a routine clinical diagnostic providing physicians with the information they need to treat their patients, namely what antibiotic to use to kill the infecting pathogen. The method can be multiplexed (multiple antibiotics and multiple organisms) and can be integrated with current bacterial identification methodologies, thus it has the potential to be the basis of a new diagnostics system that rapidly provides clinicians with both identification and antibiotic susceptibility profiles in a timeframe that is much shorter than is currently possible. The method also opens new avenues of research into how stress can potentiate the effects of antibiotics. Once developed, the technique could also be used as a rapid screening technology for new antibiotic drug candidates.
描述(由申请人提供):目前用于检测抗生素敏感性的标准方法是基于细菌在大肠杆菌存在下增殖的能力,因此这些技术耗时、昂贵且不敏感,特别是对于缓慢生长的微生物的评价。为了开发一种真正快速的药敏试验,必须避开生长的需要。我们正在开发一种微流控测试,在机械和/或可溶性应激源存在的情况下询问细胞对抗生素的反应,从而最大限度地缩短获得结果的时间。该假说的核心是,通过使细胞紧张,
诱导细胞修复过程和相关的生化途径。这些途径通常是抗生素的靶点(例如,细胞壁生物合成、蛋白质合成、DNA转录)。如果抗生素阻碍了这些修复过程,细胞将在持续应用抗生素的情况下死亡。
应力我们认为,在抗生素存在的情况下监测压力下的细胞死亡可以在超快的时间范围内提供表型信息,使医生能够更快地做出适当的抗生素治疗选择。我们设想这种方法将补充现有的基于分子诊断的快速检测(例如,PCR),因为它将提供一种低成本的快速方法,提供表型信息。虽然基因检测为流行病学研究提供了精确的信息,但试剂成本高、操作者技能要求较高以及临床效用有限,继续限制了广泛的常规使用。此外,分子诊断遭受大量的假阳性和在非无菌样本中不可接受的性能(例如,多微生物样品)。由于我们的方法可以自动化,并且基于表型变化,我们相信它作为常规临床诊断的上级性,为医生提供治疗患者所需的信息,即使用何种抗生素杀死感染病原体。该方法可以是多路复用的(多种抗生素和多种生物体),并且可以与当前的细菌鉴定方法相结合,因此它有可能成为新诊断系统的基础,该新诊断系统在比目前可能的时间短得多的时间内快速为临床医生提供鉴定和抗生素敏感性谱。该方法还为研究压力如何增强抗生素的作用开辟了新的途径。一旦开发出来,该技术还可以用作新抗生素候选药物的快速筛选技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexis F Sauer-Budge其他文献
Alexis F Sauer-Budge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexis F Sauer-Budge', 18)}}的其他基金
Microfluidic platform for stress-induced rapid antibiotic susceptibility testing
用于应激诱导快速抗生素敏感性测试的微流控平台
- 批准号:
8578600 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
Microfluidic platform for stress-induced rapid antibiotic susceptibility testing
用于应激诱导快速抗生素敏感性测试的微流控平台
- 批准号:
8839194 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
Microfluidic platform for stress-induced rapid antibiotic susceptibility testing
用于应激诱导快速抗生素敏感性测试的微流控平台
- 批准号:
9054769 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
Bacterial Drug Susceptibility Identification by Surface Enhanced Raman Microscopy
表面增强拉曼显微镜鉴定细菌药敏
- 批准号:
8303360 - 财政年份:2010
- 资助金额:
$ 39.38万 - 项目类别:
Bacterial Drug Susceptibility Identification by Surface Enhanced Raman Microscopy
表面增强拉曼显微镜鉴定细菌药敏
- 批准号:
8697003 - 财政年份:2010
- 资助金额:
$ 39.38万 - 项目类别:
Bacterial Drug Susceptibility Identification by Surface Enhanced Raman Microscopy
表面增强拉曼显微镜鉴定细菌药敏
- 批准号:
8099494 - 财政年份:2010
- 资助金额:
$ 39.38万 - 项目类别:
Bacterial Drug Susceptibility Identification by Surface Enhanced Raman Microscopy
表面增强拉曼显微镜鉴定细菌药敏
- 批准号:
7988796 - 财政年份:2010
- 资助金额:
$ 39.38万 - 项目类别:
Bacterial Drug Susceptibility Identification by Surface Enhanced Raman Microscopy
表面增强拉曼显微镜鉴定细菌药敏
- 批准号:
8499228 - 财政年份:2010
- 资助金额:
$ 39.38万 - 项目类别:
Novel Methodology for Rapid Antibiotic Susceptibiility Testing in S. aureus
金黄色葡萄球菌快速抗生素敏感性测试的新方法
- 批准号:
7660965 - 财政年份:2009
- 资助金额:
$ 39.38万 - 项目类别:
Novel Methodology for Rapid Antibiotic Susceptibiility Testing in S. aureus
金黄色葡萄球菌快速抗生素敏感性测试的新方法
- 批准号:
7898604 - 财政年份:2009
- 资助金额:
$ 39.38万 - 项目类别:
相似海外基金
Aminoglycosides with reduced ototoxicity via miRNA targeting
通过 miRNA 靶向降低耳毒性的氨基糖苷类药物
- 批准号:
9891947 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Aminoglycosides with reduced ototoxicity via miRNA targeting
通过 miRNA 靶向降低耳毒性的氨基糖苷类药物
- 批准号:
9982540 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Antibacterial properties of amphiphilic aminoglycosides
两亲性氨基糖苷类药物的抗菌特性
- 批准号:
524825-2018 - 财政年份:2018
- 资助金额:
$ 39.38万 - 项目类别:
University Undergraduate Student Research Awards
Nanobiocapteurs de résonance des plasmons de surface pour les aminoglycosides
氨基糖苷类表面等离激元共振的纳米生物捕获剂
- 批准号:
495915-2016 - 财政年份:2016
- 资助金额:
$ 39.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Designing new aminoglycosides to alleviate inner ear toxicity
设计新的氨基糖苷类药物以减轻内耳毒性
- 批准号:
8943277 - 财政年份:2015
- 资助金额:
$ 39.38万 - 项目类别: