Basal Ganglia-Thalamic Interactions in Behaving Songbirds During Learning
鸣禽学习过程中基底神经节-丘脑的相互作用
基本信息
- 批准号:8711569
- 负责人:
- 金额:$ 24.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAuditoryAxonBasal GangliaBasal Ganglia DiseasesBehaviorBehavior ControlBenchmarkingBiological ModelsBiologyBirdsBrainCell NucleusCell physiologyCellsCodeCognitive ScienceComplexCorpus striatum structureDevelopmentDevicesDigital Signal ProcessingDiseaseDoctor of PhilosophyDystoniaElectrodesExhibitsFacultyFeesFundingGoalsGrantHourHumanHuntington DiseaseImageImplantInstitutesLaboratoriesLearningMammalsMentorsMethodsModelingMotorMotor CortexMotor SkillsMovementNeuronsOperant ConditioningOutputPaperParkinson DiseasePathway interactionsPatient CarePatientsPatternPerformancePhasePlayPopulationPositioning AttributePostdoctoral FellowPresynaptic TerminalsProcessResearchResearch TrainingRoleSeriesSignal TransductionSongbirdsStructureSynapsesTechniquesTechnologyTestingThalamic structureTimeLineTrainingTraining SupportTranslatingVertebratesWorkWritingauditory feedbackbehavior influencecareercell typeclinically relevantconditioningcontrol trialdesignextracellularfallsganglion cellgraduate studenthuman diseasein vivoinsightmedical schoolsmotor controlmotor learningnervous system disorderneuropsychiatrynovelpost-doctoral trainingpostsynapticprogramspublic health relevancerelating to nervous systemresearch studysequence learningskillstwo-photonvocal learning
项目摘要
DESCRIPTION (provided by applicant): The basal ganglia (BG) circuit is a clinically relevant group of deep brain structures that appear to play similar functions in humans and birds-motor sequence learning. Even though current therapies in humans involve the stimulation of electrodes chronically implanted into BG structures, we still do not understand how electrical signals propagate through the circuit to influence behavior. Songbirds have specialized BG pathway devoted entirely to single task-song learning. Having performed the first recordings from distinct cell classes in the songbird BG (Goldberg and Fee, 2010; Goldberg et al., 2010), I am now poised to ask basic questions of BG function: How are BG outputs processed in the thalamus? How do distinct BG cell classes implement motor learning? What are the neural interactions within the BG circuit? In this proposal, I outline the path to my long term goal: to build a laboratory that harnesses the advantages of the songbird model system to study how basal ganglia microcircuits contribute to normal and abnormal motor function. For my PhD thesis, I used cellular physiology and two-photon imaging to study distinct cell classes in the cortical microcircuit. In medical school, I was trained in the care of patients with basal ganglia-related neurological disease, and in the first phase of my post-doctoral training, I have learned to record from connected neurons in the basal ganglia of freely moving animals. The training plan formulated in this proposal is specifically designed to bring me new techniques that will enable me to execute novel experiments and to transition to an independent position. For example, my immediate goals are to learn the computational, digital signal processing skills required to implement a novel song-conditioning paradigm, to develop a new method for extracellular recording from multiple neurons simultaneously during behavior, and to learn to use a recently developed intracellular microdrive for recording intracellularly from freely moving animals. These goals are to be completed in the mentored phase, before I apply for positions in the fall of 2011. As I acquire these techniques, I will be able to address basic questions of basal ganglia and thalamic function. First, I will examine how the motor thalamus integrates its two major inputs, from the BG and the cortex, by recording from connected pallidal and thalamic neurons, and by recording from antidromically identified corticothalamic projection neurons during singing. Next, I will examine BG output signals during experimentally controlled motor learning by combining neural recordings with a novel conditional auditory feedback paradigm that induces rapid trial and error song learning. Finally, I will embark on a long-term project of studying how each of the six major BG cell classes changes its activity during this learning, and how small groups of these neurons interact during behavior. This final aim includes the development of a technique to record intracellularly from BG neurons in singing birds, and constitutes the research program that I will continue, with Michale Fee's support, in the R00 phase of this grant. This training and research will take place in Michale Fee's laboratory at the McGovern Institute for Brain and Cognitive Sciences at MIT, where I am surrounded by talented graduate students, post-docs and faculty. The department is very stimulating with two weekly seminar series, world-renowned speakers and first rate facilities. Finally, even though Michale is well funded (two R01s), I am one of only two post-docs in the lab. This means Michale and I are very invested in one another and we frequently spend hours per day together, discussing experiments, writing papers and building new devices. As part of this grant resubmission Michale and I carefully formulated the experiments, the training plan, and the path to independence, and he has agreed to personally train and support me as I transition to the R00 phase, when I will begin to pursue the role that specific striatal and pallidal cell classes play in BG function. The timeline for these endeavors, which will constitute my benchmarks for progress, is presented in the Career Goals section of this proposal.
描述(由申请人提供):基底神经节(BG)回路是一组临床相关的深部脑结构,似乎在人类和鸟类的运动序列学习中发挥类似的功能。尽管目前人类的治疗方法涉及长期植入BG结构的电极刺激,但我们仍然不了解电信号如何通过电路传播以影响行为。鸣禽有专门的BG通路,完全致力于单一任务-歌曲学习。在完成鸣禽BG不同细胞类别的第一次记录后(Goldberg and Fee, 2010; Goldberg et al., 2010),我现在准备提出BG功能的基本问题:丘脑如何处理BG输出?不同的BG细胞类如何实现运动学习?BG回路中的神经相互作用是什么?在本提案中,我概述了实现我的长期目标的路径:建立一个实验室,利用鸣禽模型系统的优势来研究基底神经节微电路如何促进正常和异常的运动功能。在我的博士论文中,我使用细胞生理学和双光子成像来研究皮层微回路中不同的细胞类别。在医学院,我接受了基底神经节相关神经系统疾病患者护理方面的培训,在博士后培训的第一阶段,我学习了从自由运动动物基底神经节连接的神经元进行记录。在这份建议书中制定的培训计划是专门为我提供新的技术,使我能够进行新的实验,并过渡到独立的职位。例如,我的近期目标是学习实现一种新的歌曲调节范式所需的计算数字信号处理技能,开发一种新的方法,在行为过程中同时记录多个神经元的细胞外记录,并学习使用最近开发的细胞内微驱动器来记录细胞内自由运动的动物。这些目标将在2011年秋季申请职位之前完成。当我掌握了这些技术,我将能够解决基底神经节和丘脑功能的基本问题。首先,我将研究运动丘脑如何整合来自BG和皮层的两个主要输入,通过记录连接的苍白质和丘脑神经元,以及在唱歌过程中记录反方向识别的皮质丘脑投射神经元。接下来,我将通过将神经记录与一种新的条件听觉反馈范例相结合,在实验控制的运动学习过程中检查BG输出信号,这种范例可以诱导快速的试错歌曲学习。最后,我将着手一项长期项目,研究六种主要BG细胞类别中的每一种在这种学习过程中如何改变其活动,以及这些神经元在行为过程中如何相互作用。这一最终目标包括开发一种记录鸣禽细胞内BG神经元的技术,并构成了我将在迈克尔·费(michael Fee)的支持下,在这项拨款的R00阶段继续进行的研究项目。这项培训和研究将在麻省理工学院麦戈文脑与认知科学研究所的michael Fee实验室进行,在那里,我周围有才华横溢的研究生、博士后和教职员工。该系每周两次的系列研讨会,世界知名的演讲者和一流的设施非常令人兴奋。最后,尽管michael资金充足(两个r01),但我是实验室里仅有的两个博士后之一。这意味着迈克尔和我对彼此非常投入,我们经常每天花几个小时在一起,讨论实验,写论文和建造新设备。作为重新申请拨款的一部分,迈克尔和我仔细制定了实验、训练计划和独立之路,他同意在我过渡到R00阶段时亲自训练和支持我,那时我将开始研究特定纹状体和苍白质细胞类别在BG功能中的作用。这些努力的时间表将构成我进步的基准,在本提案的职业目标部分提出。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Origins of basal ganglia output signals in singing juvenile birds.
歌唱幼鸟的基底神经节输出信号的起源。
- DOI:10.1152/jn.00635.2014
- 发表时间:2015
- 期刊:
- 影响因子:2.5
- 作者:Pidoux,Morgane;Bollu,Tejapratap;Riccelli,Tori;Goldberg,JesseH
- 通讯作者:Goldberg,JesseH
A variability-generating circuit goes awry in a songbird model of the FOXP2 speech disorder.
- DOI:10.1016/j.neuron.2013.12.001
- 发表时间:2013-12-18
- 期刊:
- 影响因子:16.2
- 作者:Gadagkar V;Goldberg JH
- 通讯作者:Goldberg JH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Heymann Goldberg其他文献
Jesse Heymann Goldberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Heymann Goldberg', 18)}}的其他基金
Neural Mechanisms of Social Communication in Parrots
鹦鹉社会交流的神经机制
- 批准号:
10207958 - 财政年份:2021
- 资助金额:
$ 24.81万 - 项目类别:
MOTES: Micro-scale Opto-electronically Transduced Electrode Sites
MOTES:微型光电转换电极位点
- 批准号:
9244414 - 财政年份:2016
- 资助金额:
$ 24.81万 - 项目类别:
MOTES: Micro-scale Opto-electronically Transduced Electrode Sites
MOTES:微型光电转换电极位点
- 批准号:
9360613 - 财政年份:2016
- 资助金额:
$ 24.81万 - 项目类别:
Neural Mechanisms of Performance Evaluation During Motor Sequence Learning
运动序列学习过程中表现评估的神经机制
- 批准号:
10183339 - 财政年份:2015
- 资助金额:
$ 24.81万 - 项目类别:
Neural mechanisms of performance evaluation during motor sequence learning
运动序列学习过程中表现评估的神经机制
- 批准号:
9306224 - 财政年份:2015
- 资助金额:
$ 24.81万 - 项目类别:
Neural Mechanisms of Performance Evaluation During Motor Sequence Learning
运动序列学习过程中表现评估的神经机制
- 批准号:
10658875 - 财政年份:2015
- 资助金额:
$ 24.81万 - 项目类别:
Neural mechanisms of performance evaluation during motor sequence learning
运动序列学习过程中表现评估的神经机制
- 批准号:
9136884 - 财政年份:2015
- 资助金额:
$ 24.81万 - 项目类别:
Neural mechanisms of performance evaluation during motor sequence learning
运动序列学习过程中表现评估的神经机制
- 批准号:
9753376 - 财政年份:2015
- 资助金额:
$ 24.81万 - 项目类别:
Neural Mechanisms of Performance Evaluation During Motor Sequence Learning
运动序列学习过程中表现评估的神经机制
- 批准号:
10437774 - 财政年份:2015
- 资助金额:
$ 24.81万 - 项目类别:
Identifying pathways for motor variability in the mammalian brain
识别哺乳动物大脑运动变异的途径
- 批准号:
8955334 - 财政年份:2015
- 资助金额:
$ 24.81万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 24.81万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 24.81万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 24.81万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 24.81万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 24.81万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 24.81万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 24.81万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 24.81万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 24.81万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 24.81万 - 项目类别:
Training Grant














{{item.name}}会员




