Optical Imaging of Chemotherapy for Brain Tumors
脑肿瘤化疗的光学成像
基本信息
- 批准号:8629541
- 负责人:
- 金额:$ 46.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAffinityBiological ProductsBiopsyBlood - brain barrier anatomyBlood flowBostonBrainBrain DiseasesBrain NeoplasmsBuffaloesCapillary PermeabilityCephalicCharacteristicsComplexComputer SimulationComputer softwareDataDevelopmentDrug Delivery SystemsDrug FormulationsDrug KineticsDrug MonitoringEmulsionsEngineeringEnvironmental HazardsFailureFutureGliomaGoalsHumanImmunoliposomeIn SituInjection of therapeutic agentIntra-Arterial InjectionsInvadedInvestmentsKineticsLaboratoriesLiposomesLiverMagnetic Resonance ImagingMagnetismMalignant NeoplasmsMalignant neoplasm of brainMeasurementMeasuresMethodsMicrodialysisMitoxantroneModelingMonitorNeurosciences ResearchOptical MethodsOpticsOryctolagus cuniculusOutcomePermeabilityPharmaceutical PreparationsPhysiologicalPositron-Emission TomographyPropertyProtocols documentationReaction TimeResearchResolutionReticuloendothelial SystemRodentSideSiteSpeedSpleenSterically Stabilized LiposomeSystemTechniquesTechnologyTestingTherapeuticTimeTissuesTranslatingTranslationsTumor TissueTwin Multiple BirthUniversitiesUrsidae Familyanimal databaseblood flow measurementbrain tissuechemotherapycostcost effectiveexperiencehuman subjectimprovedin vivoinsightnanoparticlenoveloptical imagingparticlepharmacokinetic modelpre-clinical researchpreventprototypepublic health relevancetooltranslational neurosciencetumoruptake
项目摘要
DESCRIPTION (provided by applicant): Despite enormous advances in understanding of the pathological mechanisms, the outcome of malignant brain tumors remains bleak. In part, the failure can be attributed to the inability to deliver effective and sufficient concentrations of chemotherapeutic drugs to the tumor site. The unique anatomical, physiological, and functional characteristics of brain tissue pose enormous challenges to drug delivery. A variety of formulations of chemotherapeutic drugs have been developed to better target tumor tissues, these include: conventional liposome, sterically-stabilized (Stealth) liposomes, immunoliposomes, programmable fusogenic vehicles, nanoparticles, and magnetic nanoparticles, amongst others. For optimum benefit these smart drug formulation have to be injected locally, however the kinetics of intraarterial (IA) drug delivery to the brain is ill-understood as yet due to the lack of a method to measure tissue drug concentrations in real time. Our overall goal is to improve IA delivery of liposomal formulations chemotherapeutic drugs, guided by real-time, tissue noninvasive optical methods for monitoring drug concentrations. Optical techniques we propose also permit simultaneous assessment of blood brain barrier permeability. We will identify the properties of liposomes and determine the optimum method for their IA delivery. We will develop computational models that will help translate this preclinical research to novel treatments of human brain tumors. IA injections side-step the very significant problem of rapid clearance of liposomes and nanoparticles, by the high- capacity/high affinity clearance mechanisms - mainly in the reticuloendothelial system that has prevented the development of effective liposome-based therapeutics since the late 1970's. Improved IA delivery means that a wide range of approaches, which have been rendered ineffective by systemic administration - may now be brought to bear for the treatment of malignant brain tumors. An entire range of liposomes compositions (or biophysical/biopharmaceutical properties) that were of limited utility after conventional systemic administration might be employable by improved IA injections. Using mitoxantrone as the prototype chemotherapeutic drug, our goal is to utilize optical tools to better understand the ultra-fast and complex kinetic of IA drug delivery, to use a combination of better injection techniques and smart formulations to improve regional drug delivery, and to demonstrate increased survival in experimental a rabbit brain tumor model. The twin objectives of this multi- center (Columbia University, Boston University and University of Buffalo) application are to identify improved methods of drug delivery to the brain/brain tumors, and in parallel, to develop of an integrated optical system capable of tracking tissue concentrations, blood flow, and capillary permeability parameters and safer techniques to disrupt the blood brain barrier. While this project focuses on chemotherapeutic drugs, the technologies and pharmacokinetic insights it will generate will have applications beyond treatment of brain cancers.
描述(申请人提供):尽管在病理机制的理解方面取得了巨大的进步,但恶性脑瘤的结果仍然黯淡。在一定程度上,失败可以归因于无法将有效和足够浓度的化疗药物输送到肿瘤部位。脑组织独特的解剖、生理和功能特性给药物输送带来了巨大的挑战。为了更好地靶向肿瘤组织,已经开发了各种化疗药物配方,其中包括:传统脂质体、空间稳定(隐形)脂质体、免疫脂质体、可编程融合载体、纳米颗粒和磁性纳米颗粒等。为了达到最佳效果,这些智能药物制剂必须局部注射,然而,由于缺乏实时测量组织药物浓度的方法,动脉内(IA)药物向脑内传递的动力学尚不清楚。我们的总体目标是在实时、组织非侵入性光学方法的指导下,改善脂质体制剂化疗药物的IA递送,以监测药物浓度。我们提出的光学技术还可以同时评估血脑屏障的通透性。我们将鉴定脂质体的性质并确定其IA的最佳给药方法。我们将开发计算模型,帮助将这一临床前研究转化为人类脑瘤的新疗法。IA注射通过高容量/高亲和力的清除机制绕过了脂质体和纳米粒快速清除的重大问题-主要是在网状内皮系统中,自20世纪70年代末S以来,该系统阻碍了基于脂质体的有效疗法的发展。IA传递的改进意味着广泛的方法,这些方法已经被全身给药弄得无效-现在可能被用于治疗恶性脑肿瘤。在常规全身给药后效用有限的一系列脂质体组合物(或生物物理/生物药学特性)可通过改进的IA注射使用。使用米托蒽醌作为化疗药物的原型,我们的目标是利用光学工具更好地了解IA药物传递的超快和复杂的动力学,使用更好的注射技术和智能处方的组合来改善局部药物传递,并在实验性的兔脑肿瘤模型中证明提高存活率。这一多中心(哥伦比亚大学、波士顿大学和布法罗大学)应用的双重目标是确定改进的脑肿瘤药物输送方法,同时开发能够跟踪组织浓度、血流和毛细血管通透性参数的集成光学系统,以及破坏血脑屏障的更安全的技术。虽然这个项目的重点是化疗药物,但它将产生的技术和药代动力学见解将应用于治疗脑癌以外的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAILENDRA JOSHI其他文献
SHAILENDRA JOSHI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAILENDRA JOSHI', 18)}}的其他基金
Enhanced Intraarterial Delivery of Chemotherapeutic Drugs to the Brain
增强化疗药物向大脑的动脉内输送
- 批准号:
8117697 - 财政年份:2008
- 资助金额:
$ 46.65万 - 项目类别:
Enhanced Intraarterial Delivery of Chemotherapeutic Drugs to the Brain
增强化疗药物向大脑的动脉内输送
- 批准号:
7523820 - 财政年份:2008
- 资助金额:
$ 46.65万 - 项目类别:
Enhanced Intraarterial Delivery of Chemotherapeutic Drugs to the Brain
增强化疗药物向大脑的动脉内输送
- 批准号:
7683861 - 财政年份:2008
- 资助金额:
$ 46.65万 - 项目类别:
Enhanced Intraarterial Delivery of Chemotherapeutic Drugs to the Brain
增强化疗药物向大脑的动脉内输送
- 批准号:
7883225 - 财政年份:2008
- 资助金额:
$ 46.65万 - 项目类别:
Enhanced Intraarterial Delivery of Chemotherapeutic Drugs to the Brain
增强化疗药物向大脑的动脉内输送
- 批准号:
8307027 - 财政年份:2008
- 资助金额:
$ 46.65万 - 项目类别:
NITROXIDERGIC CEREBROVASCULAR TONE DURING ANESTHESIA
麻醉期间的硝基氧脑血管张力
- 批准号:
6858601 - 财政年份:2001
- 资助金额:
$ 46.65万 - 项目类别:
NITROXIDERGIC CEREBROVASCULAR TONE DURING ANESTHESIA
麻醉期间的硝基氧脑血管张力
- 批准号:
6635758 - 财政年份:2001
- 资助金额:
$ 46.65万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Continuing Grant














{{item.name}}会员




