Big Data education for the masses: MOOCs, modules, & intelligent tutoring systems
面向大众的大数据教育:MOOC、模块、
基本信息
- 批准号:8829370
- 负责人:
- 金额:$ 21.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAmazeAreaAttentionAutomobile DrivingBig DataBiologicalBiologyBrainClinical TrialsCommunitiesComplexComputer softwareCost AnalysisDataData AnalysesData CollectionData SetDatabasesDevelopmentDimensionsDisciplineDropsEducationEducational CurriculumEducational ModelsEducational process of instructingElectronic Health RecordEnrollmentEnvironmentGenerationsGenesGenomeGenomicsGrantHeadHumanImageKnowledgeLaboratoriesLearningLearning ModuleMachine LearningMeasurementMeasuresMedicalMedicineModelingMolecular BiologyMolecular MedicineMultivariate AnalysisPersonsPopulationPrincipal InvestigatorProteomePublic HealthPublic Health NursesPublic Health NursingRaceResearchResearch PersonnelResolutionScienceScientistSeriesServicesSolutionsStreamStudentsSystemSystems BiologyTechniquesTechnologyTestingTimeTimeLineTouch sensationTrainingTraining ProgramsUniversitiesWorkabstractingcostdensityflexibilityinstructorlecturesmeetingsmultidisciplinaryneuroimagingnew technologynovel strategiesopen sourceoperationprocess repeatabilityprogramspublic health relevanceresearch studyskillsstatisticsteacher
项目摘要
DESCRIPTION (provided by applicant): Abstract Biomedical science, higher education, software and technology are simultaneously undergoing tectonic shifts. The amazing pace of software and technological development are driving equally amazing advances in the ability to acquire massive data sets in the biomedical sciences. These new Big Biomedical data sets come in the form of complex measurements, such as that of the brain, genome, proteome and human biome or massive databases, such as with electronic health records. Big Data issues, such as reproducibility of processing, measurement and analysis techniques, are increasingly complex, and crucial. Across all domains there is a knowledge gap of researchers to analyze and interpret these new data sets and the current higher education model cannot meet the insatiable demand for this training. We propose to make substantial progress on these issues in two domains. Specifically, we propose to use Massive Open Online Courses (MOOCs) to create two series, one in neuroimaging and one in genomics. These series will allow for flexible, student paced, low cost scalable training for tens of thousands of students. Along with these series, we propose the creation of modular Big Data biostatistical content that can be used by students as well as teachers. This effort will be parallel to work on an intelligent tutoring syste called swirl. This application proposes to use swirl to create rich, gamified learning environments for students. All of the material created from this grant will be open access and free.
摘要生物医学、高等教育、软件和技术正同时发生着结构性的变化。软件和技术发展的惊人步伐同样推动了生物医学科学中获取大量数据集的能力的惊人进步。这些新的大型生物医学数据集以复杂测量的形式出现,如大脑、基因组、蛋白质组和人类生物组的测量,或大型数据库,如电子健康记录。大数据问题,如处理、测量和分析技术的可重复性,正变得越来越复杂和关键。在所有领域,研究人员在分析和解释这些新数据集方面都存在知识缺口,目前的高等教育模式无法满足对这种培训的永不满足的需求。我们建议在两个领域就这些问题取得实质性进展。具体来说,我们建议使用大规模在线开放课程(MOOCs)创建两个系列,一个是神经影像学,一个是基因组学。这些系列将允许灵活的,学生节奏,低成本可扩展的培训数以万计的学生。与这些系列一起,我们建议创建模块化的大数据生物统计学内容,可供学生和教师使用。这项工作将与一个名为swirl的智能辅导系统的工作并行。该应用程序建议使用swirl为学生创建丰富的游戏化学习环境。所有由这项授权创建的材料都将是开放获取和免费的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRIAN Scott CAFFO其他文献
BRIAN Scott CAFFO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRIAN Scott CAFFO', 18)}}的其他基金
Statistical methods for structural and functional integration in multi-modal neuroimaging data
多模态神经影像数据结构和功能整合的统计方法
- 批准号:
10296729 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Statistical methods for structural and functional integration in multi-modal neuroimaging data
多模态神经影像数据结构和功能整合的统计方法
- 批准号:
10445053 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Statistical methods for structural and functional integration in multi-modal neuroimaging data
多模态神经影像数据结构和功能整合的统计方法
- 批准号:
10586155 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8019742 - 财政年份:2010
- 资助金额:
$ 21.6万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8513162 - 财政年份:2010
- 资助金额:
$ 21.6万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8146107 - 财政年份:2010
- 资助金额:
$ 21.6万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8728008 - 财政年份:2010
- 资助金额:
$ 21.6万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
8321037 - 财政年份:2010
- 资助金额:
$ 21.6万 - 项目类别:
Statistical methods for large n and p problems
大型 n 和 p 问题的统计方法
- 批准号:
9134138 - 财政年份:2010
- 资助金额:
$ 21.6万 - 项目类别:
A mentored training program in quantitative medical imaging
定量医学成像指导培训计划
- 批准号:
7226293 - 财政年份:2006
- 资助金额:
$ 21.6万 - 项目类别:
相似海外基金
AMAZE : Advanced MOF-loaded Air-pollution control and Zero-emission Electrospun filters
AMAZE:先进的 MOF 负载空气污染控制和零排放静电纺丝过滤器
- 批准号:
10078131 - 财政年份:2023
- 资助金额:
$ 21.6万 - 项目类别:
Collaborative R&D














{{item.name}}会员




