Synaptic function of Chromosome 21- encoded microRNAs

21 号染色体编码的 microRNA 的突触功能

基本信息

项目摘要

DESCRIPTION (provided by applicant): The formation and maintenance of appropriate and functional synaptic connections is a highly regulated process, with misregulation resulting in disordered cognition. Given the emerging information about gene expression regulation by non-coding RNAs, synaptic functions are likely to be regulated at least in part by non- coding RNAs, including microRNAs (miRNAs). Several miRNAs have been implicated in spinogenesis, dendritic arborization, and synaptogenesis. Thus, over- or under-expression of miRNAs in the brain could conceivably contribute to synaptic dysfunction resulting in neurological or neuropsychiatric disorders. Human chromosome 21 (HSA21) codes for 5 known miRNAs, and Trisomy 21 (TS21, i.e. Down syndrome) is the most common genetic form of intellectual disability. Thus, TS21 provides a unique model to study the effect of miRNA overexpression on the formation and functionality of synapses. The objective of this project is to elucidate the role of HSA21 miRNAs in synaptic dysfunction in human neurons generated from TS21 patients, which may be implicated in the cognitive disability in TS21 by testing the hypothesis that overexpression of HSA21 miRNAs leads to dysfunction in synaptic transmission that causes cognitive impairment in TS21 patients. Furthermore, there is preliminary evidence that suggests these miRNAs may affect synaptic integrity via a methyl CpG binding protein 2 (MeCP2) dependent pathway. Utilizing the innovative induced pluripotent stem (iPS) cell and induced neuronal (iN) cell technologies, it is possible to study the effects of HSA21 miRNAs on the synapses of human neurons. Following overexpression of HSA21 miRNAs in control iNs, synaptic function will be assessed by morphological and functional analyses, including electrophysiology and Calcium imaging. MeCP2 will be confirmed as a target of these miRNAs by dual luciferase assay, and its role in the miRNA-mediated modification of synapses will be tested via knockdown and rescue. Furthermore, patient-specific iNs will be used to elucidate whether the overexpression of HSA21 miRNAs causes synaptic defects in TS21. After verifying the expression levels of HSA21 miRNAs in TS21 iNs via qPCR and correlating them with the level of MeCP2 (determined by Western Blot), we will morphologically and functionally characterize the synapse for comparison with control iNs. We will then establish a cause-effect relationship between HSA21 miRNA overexpression and synaptic defects using Tough Decoys to antagonize the miRNAs and "rescue" the synaptic function of TS21-iN cells, as well as the expression level of MeCP2. The proposed research is innovative, because we will use interdisciplinary analytical methodologies and combine the newly developed iN cell and iPS cell technologies to examine the functions of HSA21 miRNAs in the nervous system, which will broaden our knowledge of their biological functions, as well as provide insight into mechanistic and molecular bases for the treatment of TS21.
DESCRIPTION (provided by applicant): The formation and maintenance of appropriate and functional synaptic connections is a highly regulated process, with misregulation resulting in disordered cognition. Given the emerging information about gene expression regulation by non-coding RNAs, synaptic functions are likely to be regulated at least in part by non- coding RNAs, including microRNAs (miRNAs). Several miRNAs have been implicated in spinogenesis, dendritic arborization, and synaptogenesis. Thus, over- or under-expression of miRNAs in the brain could conceivably contribute to synaptic dysfunction resulting in neurological or neuropsychiatric disorders. Human chromosome 21 (HSA21) codes for 5 known miRNAs, and Trisomy 21 (TS21, i.e. Down syndrome) is the most common genetic form of intellectual disability. Thus, TS21 provides a unique model to study the effect of miRNA overexpression on the formation and functionality of synapses. The objective of this project is to elucidate the role of HSA21 miRNAs in synaptic dysfunction in human neurons generated from TS21 patients, which may be implicated in the cognitive disability in TS21 by testing the hypothesis that overexpression of HSA21 miRNAs leads to dysfunction in synaptic transmission that causes cognitive impairment in TS21 patients. Furthermore, there is preliminary evidence that suggests these miRNAs may affect synaptic integrity via a methyl CpG binding protein 2 (MeCP2) dependent pathway. Utilizing the innovative induced pluripotent stem (iPS) cell and induced neuronal (iN) cell technologies, it is possible to study the effects of HSA21 miRNAs on the synapses of human neurons. Following overexpression of HSA21 miRNAs in control iNs, synaptic function will be assessed by morphological and functional analyses, including electrophysiology and Calcium imaging. MeCP2 will be confirmed as a target of these miRNAs by dual luciferase assay, and its role in the miRNA-mediated modification of synapses will be tested via knockdown and rescue. Furthermore, patient-specific iNs will be used to elucidate whether the overexpression of HSA21 miRNAs causes synaptic defects in TS21. After verifying the expression levels of HSA21 miRNAs in TS21 iNs via qPCR and correlating them with the level of MeCP2 (determined by Western Blot), we will morphologically and functionally characterize the synapse for comparison with control iNs. We will then establish a cause-effect relationship between HSA21 miRNA overexpression and synaptic defects using Tough Decoys to antagonize the miRNAs and "rescue" the synaptic function of TS21-iN cells, as well as the expression level of MeCP2. The proposed research is innovative, because we will use interdisciplinary analytical methodologies and combine the newly developed iN cell and iPS cell technologies to examine the functions of HSA21 miRNAs in the nervous system, which will broaden our knowledge of their biological functions, as well as provide insight into mechanistic and molecular bases for the treatment of TS21.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather McGowan其他文献

Heather McGowan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heather McGowan', 18)}}的其他基金

Synaptic function of Chromosome 21- encoded microRNAs
21 号染色体编码的 microRNA 的突触功能
  • 批准号:
    8897182
  • 财政年份:
    2014
  • 资助金额:
    $ 3.16万
  • 项目类别:
Synaptic function of Chromosome 21- encoded microRNAs
21 号染色体编码的 microRNA 的突触功能
  • 批准号:
    9312335
  • 财政年份:
    2014
  • 资助金额:
    $ 3.16万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了