Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray

用于组织微阵列表达模式比较分析的图像挖掘

基本信息

  • 批准号:
    8705583
  • 负责人:
  • 金额:
    $ 48.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-30 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The capacity to distinguish among subclasses of disease affects how patients are treated, which medications are appropriate, and what levels of risk are justified. Tissue microarray (TMA) technology makes it possible to investigate and confirm clinico-pathologic correlations which have been postulated based upon the evaluation of whole histology sections. Unfortunately, inconsistencies often arise during the evaluation process as a result of subjective impressions and inter- and intra-observer variability. Advanced imaging and computational tools make it possible to detect and track subtle changes in measurable parameters leading to insight regarding the underlying mechanisms of disease progression and the discovery of novel diagnostic and prognostic clues which are not apparent by human inspection alone. The overarching goals of this renewal application are to build upon progress made in the first phase of the project and design, develop and evaluate new capabilities by meeting the objectives of the following specific aims: (1) Develop and evaluate a new family of multi-stage, searching algorithms to facilitate quick, reliable interrogation of larg-scale, clinical and research, microscopy applications including whole-slide imaging and tissue microarray; (2) Develop and evaluate a suite of high-throughput services capable of automatically detecting, archiving and indexing user-specified objects (e.g. tissues, cells) in large collections of images and implement extensions to the data models and support for optimized pipeline selection. These capabilities will enable large-scale correlative outcomes studies and support expansion of the "gold standard" image archives and correlated clinical repositories. The services will take advantage of state-of-the-art parallel CPU-GPU machines and the searching algorithms described in Aim 1; (3) Optimize the imaging, computational and content-based image retrieval algorithms and tools using a wide range of different tissues, cancer types and biomarkers to support clinical and research experiments and studies involving patient stratification, quality-control, and outcomes assessment; and (4) Deploy the analytical tools, data models, user-centered interfaces and reference libraries of imaged specimens to participating adopter sites to conduct open-set usability and performance studies and make these resources available to the clinical and research communities as open source software and resources to support future development and testing of new hypotheses, algorithms and methods.
描述(由申请人提供):区分疾病亚类的能力影响患者的治疗方式,哪些药物是适当的,以及什么样的风险水平是合理的。组织微阵列(TMA)技术使得研究和确认基于整个组织切片评估的临床病理相关性成为可能。遗憾的是,由于主观印象以及观察者之间和观察者内部的差异,在评价过程中经常出现不一致。先进的成像和计算工具使检测和跟踪可测量参数的细微变化成为可能,从而深入了解疾病进展的潜在机制,并发现仅凭人类检查无法明显看出的新型诊断和预后线索。这一延期申请的首要目标是在项目第一阶段取得的进展基础上,设计、开发和评价新的能力,实现以下具体目标:(1)开发和评估一系列新的多阶段搜索算法,以促进大规模、临床和研究的快速、可靠的询问,显微镜应用,包括全载玻片成像和组织微阵列;(2)开发和评估一套能够自动检测、存档和索引用户指定对象的高吞吐量服务在大型图像集合中的组织(例如,组织、细胞),并实现对数据模型的扩展和对优化的流水线选择的支持。这些功能将使大规模的相关结果研究和支持扩展的“黄金标准”的图像档案和相关的临床资料库。这些服务将利用最先进的并行CPU-GPU机器和目标1中描述的搜索算法;(3)使用广泛的不同组织、癌症类型和生物标志物优化成像、计算和基于内容的图像检索算法和工具,以支持涉及患者分层、质量控制和结果评估的临床和研究实验和研究;以及(4)将分析工具、数据模型、以用户为中心的界面和成像标本的参考库部署到参与的采用者站点,以进行开放集可用性和性能研究,并将这些资源作为开源软件和资源提供给临床和研究社区,以支持新假设、算法和方法的未来开发和测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David J Foran其他文献

David J Foran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David J Foran', 18)}}的其他基金

Informatics for Integrative Brain Tumor Whole Slide Analysis
综合脑肿瘤全玻片分析的信息学
  • 批准号:
    8675279
  • 财政年份:
    2011
  • 资助金额:
    $ 48.46万
  • 项目类别:
Informatics for Integrative Brain Tumor Whole Slide Analysis
综合脑肿瘤全玻片分析的信息学
  • 批准号:
    8294579
  • 财政年份:
    2011
  • 资助金额:
    $ 48.46万
  • 项目类别:
Informatics for Integrative Brain Tumor Whole Slide Analysis
综合脑肿瘤全玻片分析的信息学
  • 批准号:
    8163751
  • 财政年份:
    2011
  • 资助金额:
    $ 48.46万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7903828
  • 财政年份:
    2009
  • 资助金额:
    $ 48.46万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7925625
  • 财政年份:
    2007
  • 资助金额:
    $ 48.46万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7691690
  • 财政年份:
    2007
  • 资助金额:
    $ 48.46万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7323147
  • 财政年份:
    2007
  • 资助金额:
    $ 48.46万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7941610
  • 财政年份:
    2007
  • 资助金额:
    $ 48.46万
  • 项目类别:
Collaborative Systems for Analyzing Tissue Microarrays
用于分析组织微阵列的协作系统
  • 批准号:
    7085360
  • 财政年份:
    2005
  • 资助金额:
    $ 48.46万
  • 项目类别:
Collaborative Systems for Analyzing Tissue Microarrays
用于分析组织微阵列的协作系统
  • 批准号:
    6984428
  • 财政年份:
    2005
  • 资助金额:
    $ 48.46万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 48.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了