Adaptation of a Novel RNA virus for vaccine use
新型RNA病毒用于疫苗用途的改造
基本信息
- 批准号:8415821
- 负责人:
- 金额:$ 7.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlphavirusAlphavirus InfectionsAntibodiesAntigensApoptosisAttenuatedAttenuated VaccinesCapsidCapsid ProteinsCell Culture TechniquesCell DeathCell LineCellsCharacteristicsClinicalCollectionCommunicable DiseasesCommunitiesComplexDNA VirusesDNA biosynthesisDataDendritic CellsDevelopmentDrug FormulationsExhibitsFunctional RNAFutureGenesGenetic TranscriptionGenomeGenomicsGoalsHourHousingHumanHuman VirusImmuneImmunologic SurveillanceIn VitroInsectaKineticsMalignant NeoplasmsMammalian CellMedicalMethodsModificationNatural ImmunityOutcomeParticulatePhasePhosphate BufferPlayProductionProteinsPublic HealthRNARNA VirusesRNA-Directed RNA PolymeraseReporterResearchResearch PriorityRiskRoleSafetyScientistSemliki forest virusSmall RNASurfaceSystemTemperatureTestingTransfectionTransgenesVaccine AntigenVaccinesViralViral GenomeVirionVirusWorkadaptive immunityattenuationbasecell typecostcost effectivedesignhuman diseaseimmune activationimmunogenicityimprovedinnovationmembernanoparticlenovelnovel vaccinesparticlepathogenpreventpromoterreconstitutionresponseself assemblytransgene expressionuptakevaccine deliveryvaccine developmentvaccine safetyvector vaccineviral RNAvirus characteristic
项目摘要
DESCRIPTION (provided by applicant): The overall objective of the research proposed is to create a new RNA virus vaccine using a novel self-assembling nanoparticle packaging method, designed to overcome safety, cost and other limitations that slow vaccine development. Virus-based vaccines have the ability to stimulate both innate and adaptive immunity, which can improve vaccine potency compared to other methods of vaccine delivery. RNA virus based vaccines have improved safety compared to DNA virus vaccines because they can't integrate into the host genome, but are still limited by cell-based capsid packaging methods that are costly and limit vaccine boosting. Our preliminary data show that by removing all native capsid assembly constraints self-assembling vaccines can be made with improved safety, vaccine stability, and at very low cost, simply by mixing RNA and coat protein together. The Specific Aims of this research plan are 1) to modify the insect Flock House Virus RNA genome with a non-native capsid origin of assembly and confirm in vitro particle formation, 2) to insert a foreig reporter transgene under the control of a virus promoter and evaluate the protein accumulation in cells, and 3) to combine the transgene expression and nanoparticle self-assembly, and to confirm that both are functional. The resulting product is a viral RNA vaccine with packaging characteristics independent of its native capsid, while retaining the virus characteristics that make it a good vaccine antigen. That includes nM particulate size for optimal antigen uptake by immune cells, stability at room temperature for years, and the ability to safely carry viral transgene expression into immune cells without the risk of virus reconstitution. Flock House Virus was selected for self-assembly because it also has many desirable characteristics. It is not a mammalian pathogen, and thus will exhibit improved safety. It has very high levels of antigen expression in mammalian cell types, and greatly reduced cell death compared to RNA viruses currently used in vaccine development. Flock House Virus has not been previously exploited for vaccine development because the native capsid packaging characteristics significantly limit transgene insert size and the virus particles still need to be made in cell culture. The expected outcome of this application will be to overcome native capsid packaging limitations, and create a self-assembling RNA nanoparticle based on the Flock House Virus genome, with high level antigen expression. Our research is significant, because it will fulfill our long-term objective to
create cost effective, safe and robust RNA vaccines, and it is innovative because we will validate that any RNA virus with desirable characteristics can be adapted for nanoparticle self- assembly, and increase the pace of RNA vaccine development for human use.
描述(由申请人提供):拟议研究的总体目标是使用新型自组装纳米颗粒包装方法创建一种新的RNA病毒疫苗,旨在克服安全性,成本和其他限制,减缓疫苗开发。基于病毒的疫苗具有刺激先天免疫和适应性免疫的能力,与其他疫苗递送方法相比,这可以提高疫苗效力。与DNA病毒疫苗相比,基于RNA病毒的疫苗具有提高的安全性,因为它们不能整合到宿主基因组中,但仍然受到基于细胞的衣壳包装方法的限制,所述方法成本高并且限制疫苗加强。我们的初步数据表明,通过去除所有天然衣壳组装限制,可以简单地通过将RNA和外壳蛋白混合在一起以非常低的成本制备具有改进的安全性、疫苗稳定性的自组装疫苗。本研究计划的具体目的是:1)用非天然衣壳组装起点修饰昆虫鸡场病毒RNA基因组,并确认体外颗粒形成; 2)在病毒启动子控制下插入外源报告基因转基因,并评估细胞中的蛋白质积累; 3)将转基因表达和纳米颗粒自组装联合收割机结合起来,并确认两者均具有功能。所得产物是具有独立于其天然衣壳的包装特征的病毒RNA疫苗,同时保留使其成为良好疫苗抗原的病毒特征。这包括用于免疫细胞最佳抗原摄取的nM颗粒大小,在室温下多年的稳定性,以及将病毒转基因表达安全携带到免疫细胞中而没有病毒重建风险的能力。选择鸡舍病毒进行自组装,因为它也具有许多理想的特性。它不是哺乳动物病原体,因此将表现出改善的安全性。它在哺乳动物细胞类型中具有非常高的抗原表达水平,与目前用于疫苗开发的RNA病毒相比,大大减少了细胞死亡。鸡群屋病毒以前未被用于疫苗开发,因为天然衣壳包装特征显著限制了转基因插入物的大小,并且病毒颗粒仍需要在细胞培养物中制备。本申请的预期结果将是克服天然衣壳包装限制,并基于Flock House病毒基因组产生具有高水平抗原表达的自组装RNA纳米颗粒。我们的研究意义重大,因为它将实现我们的长期目标,
创造出具有成本效益、安全和稳健的RNA疫苗,这是创新的,因为我们将验证任何具有理想特征的RNA病毒都可以适应纳米颗粒自组装,并加快人类使用的RNA疫苗开发的步伐。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoparticle encapsidation of Flock house virus by auto assembly of Tobacco mosaic virus coat protein.
- DOI:10.3390/ijms151018540
- 发表时间:2014-10-14
- 期刊:
- 影响因子:5.6
- 作者:Maharaj PD;Mallajosyula JK;Lee G;Thi P;Zhou Y;Kearney CM;McCormick AA
- 通讯作者:McCormick AA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Anne McCormick其他文献
Alison Anne McCormick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Anne McCormick', 18)}}的其他基金
Rapid Manufacturing of a Universal Flu Vaccine Using TMV-conjugated Centralized Antigens
使用 TMV 结合的集中抗原快速生产通用流感疫苗
- 批准号:
10633131 - 财政年份:2020
- 资助金额:
$ 7.24万 - 项目类别:
Rapid Manufacturing of a Universal Flu Vaccine Using TMV-conjugated Centralized Antigens
使用 TMV 结合的集中抗原快速生产通用流感疫苗
- 批准号:
10411922 - 财政年份:2020
- 资助金额:
$ 7.24万 - 项目类别:
Adaptation of a Novel RNA virus for vaccine use
新型RNA病毒用于疫苗用途的改造
- 批准号:
8279850 - 财政年份:2012
- 资助金额:
$ 7.24万 - 项目类别:
Improved idiotype immunotherapy for lymphoma by RNA vaccine delivery
通过 RNA 疫苗递送改进淋巴瘤的独特型免疫疗法
- 批准号:
7707096 - 财政年份:2009
- 资助金额:
$ 7.24万 - 项目类别:
Improved idiotype immunotherapy for lymphoma by RNA vaccine delivery
通过 RNA 疫苗递送改进淋巴瘤的独特型免疫疗法
- 批准号:
7843607 - 财政年份:2009
- 资助金额:
$ 7.24万 - 项目类别:
相似海外基金
Intracellular functions and mechanisms of alphavirus ion channel 6K
甲病毒离子通道6K的细胞内功能和机制
- 批准号:
10727819 - 财政年份:2023
- 资助金额:
$ 7.24万 - 项目类别:
Elucidating the mechanisms of alphavirus subgenomic RNA translation
阐明甲病毒亚基因组 RNA 翻译机制
- 批准号:
10678281 - 财政年份:2023
- 资助金额:
$ 7.24万 - 项目类别:
Development of a Cross-Protective New World Encephalitic Alphavirus Subunit Vaccine
交叉保护性新世界脑炎甲病毒亚单位疫苗的研制
- 批准号:
10696914 - 财政年份:2023
- 资助金额:
$ 7.24万 - 项目类别:
Defining the Molecular Determinants of Encephalitic Alphavirus Viremia
定义脑炎甲病毒血症的分子决定因素
- 批准号:
10599124 - 财政年份:2022
- 资助金额:
$ 7.24万 - 项目类别:
Defining the Molecular Determinants of Encephalitic Alphavirus Viremia
定义脑炎甲病毒血症的分子决定因素
- 批准号:
10384551 - 财政年份:2022
- 资助金额:
$ 7.24万 - 项目类别:
Center of Excellence for Encephalitic Alphavirus Therapeutics
脑炎甲病毒治疗卓越中心
- 批准号:
10631703 - 财政年份:2022
- 资助金额:
$ 7.24万 - 项目类别:
Mechanisms of alphavirus infectivity and adaptation - Resubmission - 1
甲病毒感染性和适应机制 - 重新提交 - 1
- 批准号:
10556424 - 财政年份:2022
- 资助金额:
$ 7.24万 - 项目类别:
Structural Mechanisms of Alphavirus Membrane Fusion
甲病毒膜融合的结构机制
- 批准号:
10444088 - 财政年份:2022
- 资助金额:
$ 7.24万 - 项目类别:
Structural Mechanisms of Alphavirus Membrane Fusion
甲病毒膜融合的结构机制
- 批准号:
10612929 - 财政年份:2022
- 资助金额:
$ 7.24万 - 项目类别:
Mechanisms of alphavirus infectivity and adaptation - Resubmission - 1
甲病毒感染性和适应机制 - 重新提交 - 1
- 批准号:
10444392 - 财政年份:2022
- 资助金额:
$ 7.24万 - 项目类别:














{{item.name}}会员




