SCH: Enhancing Nurse Decision-Making via Augmented Communication Tools (ACTs)

SCH:通过增强沟通工具 (ACT) 增强护士决策

基本信息

  • 批准号:
    8894220
  • 负责人:
  • 金额:
    $ 25.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-23 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Smart algorithms that effectively analyze patient care data can enhance clinical communication to save lives. In 2000, the Institute of Medicine estimated 98,000 preventable patient deaths occur annually in US hospitals due to miscommunication [1]. Electronic health records (EHRs) were expected to facilitate accurate communication within the care team and provide data to enable automated clinical decision support systems. Unfortunately, miscommunication remains a significant cause of patient deaths [2]. Providers are now required to demonstrate meaningful use of EHR systems to improve quality of care and patient outcomes. Despite this, providers continue to report that EHR systems are cumbersome and interfere with care-team communication. Information entered into an EHR is rarely used by nurses due to the time and difficulty involved in its retrieval. As a result, nurses continue to verbally convey critical patient care information to the next nurse during shift changes. Verbal report or hand-off, where critical patient information is exchanged in only minutes, is inefficient. Worse, it is highly susceptible to communication errors. Broader Impacts: Research: 1) Increase patient safety; 2) Provide preliminary data to expand this work to include physician-physician and physician-RN communication and decision-making in the EHR; 3) Share our discoveries to inform other industries who may also benefit from this technology. Education: 1) Contribute to curriculum enhancements whereby RN students learn strategies to recognize and effectively communicate CEs; 2) As part of curriculum enhancements, include healthcare applications for computer and information science students; 3) Disseminate findings via academic publications, professional meetings, a project website and social media. Mentoring: 1) Mentor budding scientists in the roles of research assistants (RAs) and post doctoral fellows studying nursing and computer science to forge collaborative interdisciplinary relationships for ongoing research; 2) Interest and recruit underrepresented students in STEM and careers in healthcare. RELEVANCE (See instructions): The electronic health record (EHR) has been thought to be a top! to decrease patient deaths related to miscommunication. However, the current EHR falls short of this goal. We propose to develop and test an algorithm that will augment the EHR to more effectively assist nurses in decision-making and communication, ultimately increasing patient safety.
 描述(由申请人提供):有效分析患者护理数据的智能算法可以增强临床沟通以挽救生命。2000年,美国医学研究所估计,由于沟通不畅,美国医院每年发生98,000例可预防的患者死亡[1]。预计电子健康记录(EHR)将促进护理团队内部的准确沟通,并提供数据以实现自动化临床决策支持系统。不幸的是,沟通不畅仍然是患者死亡的重要原因[2]。提供者现在需要证明EHR系统的有意义的使用,以提高护理质量和患者的结果。尽管如此,供应商继续报告说,电子健康记录系统是繁琐的,干扰护理团队的沟通。输入到EHR的信息很少被护士使用,因为检索的时间和难度很大。因此,护士继续口头传达重要的病人护理信息, 下一个护士换班的时候口头报告或移交,其中关键的病人信息交换只有几分钟,是效率低下的。更糟糕的是,它很容易出现通信错误。更广泛的影响:研究:1)提高患者安全性; 2)提供初步数据,以扩大这项工作,包括EHR中的医生-医生和医生-RN沟通和决策; 3)分享我们的发现,以告知其他可能受益于这项技术的行业。学历:1)有助于课程改进,使RN学生学习识别和有效沟通CE的策略; 2)作为课程改进的一部分,包括计算机和信息科学学生的医疗保健应用程序; 3)通过学术出版物,专业会议,项目网站和社交媒体传播研究结果。指导:1)指导研究助理(RA)和博士后研究员的角色中的初露头角的科学家学习护理和计算机科学,为正在进行的研究建立跨学科的合作关系; 2)感兴趣并招募在STEM和医疗保健职业中代表性不足的学生。相关性(见说明):电子健康记录(EHR)一直被认为是一个顶部!减少因沟通失误导致的病人死亡然而,目前的EHR福尔斯达不到这一目标。我们建议开发和测试一种算法,该算法将增强EHR,以更有效地帮助护士进行决策和沟通,最终提高患者的安全性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jane M Carrington其他文献

Application of Within-Methods Triangulation to Analyze Hospital System Health
应用方法内三角测量来分析医院系统健康状况

Jane M Carrington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.16万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了