Epigenetics-mediated transcription regulation in mammals
表观遗传学介导的哺乳动物转录调控
基本信息
- 批准号:8752848
- 负责人:
- 金额:$ 34.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBase PairingBindingBinding ProteinsBinding SitesBiologicalBiological AssayBiological ModelsBiological ProcessCell LineCellsCoupledCytosineDNADNA BindingDNA MethylationDNA ProbesDNA SequenceDNA Transposable ElementsDNA-Protein InteractionDataDeoxyribonuclease IDevelopmental BiologyEMSAEnhancersEpigenetic ProcessEukaryotaGelGene ExpressionGene Expression RegulationGene SilencingGene TargetingGenetic TranscriptionGenomic DNAGenomic ImprintingGoalsHistonesHumanIn VitroKnowledgeLuciferasesMammalsMapsMass Spectrum AnalysisMediatingMethylationMissionModelingModificationMolecularMonitorNeuronal InjuryNucleic Acid Regulatory SequencesPhysiologicalPlayPopulationPositioning AttributePromoter RegionsProtein BindingProtein Binding DomainProtein MicrochipsProteinsPublic HealthPublicationsQualifyingReaderReagentRecruitment ActivityRegenerative MedicineRegulator GenesRegulatory ElementResearchResolutionRoleSequence AnalysisSideSiteSite-Directed MutagenesisSpecificitySurveysTechniquesTertiary Protein StructureTestingTherapeuticTranscriptional RegulationX InactivationZinc Fingersaxon regenerationbasecarcinogenesisdeep sequencingfactor Ahuman DNAin vivo Modelinsightmethyl groupmethylomemutantnovelnovel strategiespromoterpublic health relevancesuccesstranscription factor
项目摘要
DESCRIPTION (provided by applicant):
DNA methylation is an important epigenetic modification that plays crucial roles in multiple biological processes. Technical advance, especially a variety of deep sequencing-based techniques, have made it possible to monitor DNA methylome changes at a single-base resolution. However, how to interpret the epigenetic information encoded by the fast accumulating methylome data is still challenging. DNA methylation is traditionally considered to disrupt the interactions between transcription factors (TFs) and cis-regulatory regions and thus, silence the expression of downstream target genes. However, recent studies, especially our recent discoveries, suggest that many TFs and co-factors preferentially bind to methylated DNA motifs and, in some cases, transactivate downstream gene expression, challenging the current paradigm of DNA methylation in transcription regulation. Identification of comprehensive sets of functional methylation sites and their interacting partners will greatly expand the protein-DNA interaction landscape in a new direction and promise significant advances in the understanding of the biological roles of DNA methylation. To achieve these goals, we propose four specific aims in this R01 application. First, we will survey all possible 8-base DNA sequence combinations to identify methylated sequences that can be recognized by human TFs. A pool of methylated DNA motifs will be probed on the human TF protein microarrays and the DNA fragments that are captured by the proteins on the microarrays will be recovered and their sequences determined with deep-sequencing. Second, we will predict which of these methylated motifs are likely to play a role in gene regulation and interact with proteins. Those 8-mer sequences that are statistically enriched in the recovered population will be mapped to the available methylomes and examine whether they overlap with the known regulatory regions. The qualified motifs will be synthesized and individually probed on the protein microarrays to identify their binding partners. Third, we will predict the protein domains that are responsible fo methylated DNA binding. The sequences from the same TF subfamilies will be compared and the positions that can best separated the proteins with and without methylated binding activities will be the candidates for methylation binding. The prediction will be tested by site-directed mutagenesis coupled with gel shift and cell-based luciferase assays. Finally, we will use both in vitro and in vivo models of mammalian axon regeneration to investigate the physiological roles of newly identified mCpG-dependent TF-DNA interactions. The positive results provided by this Aim will not only reveal novel epigenetic mechanisms of mammalian axon regeneration, but also provide proof-of-concept evidence that mCpG-dependent TF-DNA interactions are physiological regulators of gene expression.
描述(由申请人提供):
DNA甲基化是一种重要的表观遗传修饰,在多种生物学过程中起着至关重要的作用。技术的进步,特别是各种基于深度测序的技术,使得以单碱基分辨率监测DNA甲基化组变化成为可能。然而,如何解释由快速积累的甲基化组数据编码的表观遗传信息仍然具有挑战性。传统上认为DNA甲基化破坏了转录因子(TF)与顺式调控区之间的相互作用,从而沉默下游靶基因的表达。然而,最近的研究,特别是我们最近的发现,表明许多TF和辅因子优先结合甲基化的DNA基序,并在某些情况下,反式激活下游基因表达,挑战目前的DNA甲基化在转录调控的范式。全面的功能甲基化位点及其相互作用的合作伙伴的识别将大大扩大蛋白质-DNA相互作用的景观在一个新的方向,并承诺在DNA甲基化的生物学作用的理解显着的进步。为了实现这些目标,我们在R 01应用程序中提出了四个具体目标。首先,我们将调查所有可能的8个碱基的DNA序列组合,以确定甲基化的序列,可以识别的人TF。将在人TF蛋白微阵列上探测甲基化DNA基序的池,并回收由微阵列上的蛋白捕获的DNA片段,并用深度测序确定其序列。其次,我们将预测这些甲基化基序中哪些可能在基因调控中发挥作用并与蛋白质相互作用。在回收群体中统计学富集的那些8聚体序列将被映射到可用的甲基化组,并检查它们是否与已知的调控区重叠。将合成合格的基序,并在蛋白质微阵列上单独探测,以鉴定其结合配偶体。第三,我们将预测负责甲基化DNA结合的蛋白质结构域。将比较来自相同TF亚家族的序列,并且可以最好地分离具有和不具有甲基化结合活性的蛋白质的位置将是甲基化结合的候选者。将通过定点诱变结合凝胶位移和基于细胞的荧光素酶测定来测试预测。最后,我们将使用体外和体内哺乳动物轴突再生模型来研究新发现的mCpG依赖性TF-DNA相互作用的生理作用。该目的提供的积极结果不仅将揭示哺乳动物轴突再生的新表观遗传机制,而且还提供了概念验证证据,即mCpG依赖性TF-DNA相互作用是基因表达的生理调节剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Qian其他文献
Jiang Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Qian', 18)}}的其他基金
Connecting AMD SNPs to Functions Using Allele-specific Interactions
使用等位基因特异性相互作用将 AMD SNP 连接到功能
- 批准号:
10538627 - 财政年份:2021
- 资助金额:
$ 34.43万 - 项目类别:
Connecting AMD SNPs to Functions Using Allele-specific Interactions
使用等位基因特异性相互作用将 AMD SNP 连接到功能
- 批准号:
10322157 - 财政年份:2021
- 资助金额:
$ 34.43万 - 项目类别:
Remodeling of chromatin and transcriptomic landscape to enhance optic nerve regeneration
重塑染色质和转录组景观以增强视神经再生
- 批准号:
10630108 - 财政年份:2020
- 资助金额:
$ 34.43万 - 项目类别:
Remodeling of chromatin and transcriptomic landscape to enhance optic nerve regeneration
重塑染色质和转录组景观以增强视神经再生
- 批准号:
10413199 - 财政年份:2020
- 资助金额:
$ 34.43万 - 项目类别:
Computational Tools for Single Cell Analysis: Application to Retinal Degeneration
单细胞分析计算工具:在视网膜变性中的应用
- 批准号:
10179397 - 财政年份:2018
- 资助金额:
$ 34.43万 - 项目类别:
Computational Tools for Single Cell Analysis: Application to Retinal Degeneration
单细胞分析计算工具:在视网膜变性中的应用
- 批准号:
9764371 - 财政年份:2018
- 资助金额:
$ 34.43万 - 项目类别:
Epigenetics-mediated transcription regulation in mammals
表观遗传学介导的哺乳动物转录调控
- 批准号:
9115212 - 财政年份:2014
- 资助金额:
$ 34.43万 - 项目类别:
Differential Regulatory Networks in Disease: Application to Macular Degeneration
疾病中的差异调节网络:在黄斑变性中的应用
- 批准号:
9132254 - 财政年份:2014
- 资助金额:
$ 34.43万 - 项目类别:
Dynamic Usage of Network Motifs in Retinal Development and Diseases
网络基序在视网膜发育和疾病中的动态使用
- 批准号:
8176147 - 财政年份:2011
- 资助金额:
$ 34.43万 - 项目类别:
Dynamic Usage of Network Motifs in Retinal Development and Diseases
网络基序在视网膜发育和疾病中的动态使用
- 批准号:
8303215 - 财政年份:2011
- 资助金额:
$ 34.43万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.43万 - 项目类别:
Continuing Grant














{{item.name}}会员




