Next Generation Sequencing for Disease Mapping in a Founder Population
用于创建人群疾病图谱的下一代测序
基本信息
- 批准号:8707558
- 负责人:
- 金额:$ 80.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAllelesAmericanArchitectureAshkenazimBackBiologyCollaborationsCollectionCommunitiesComplexComputing MethodologiesConsensusCost SharingDNADNA ResequencingDataDiagnosisDiseaseEuropeanFounder GenerationFrequenciesFundingFutureGene FrequencyGene TargetingGeneticGenetic HeterogeneityGenomeGenomic SegmentGenomicsGenotypeHaplotypesHeritabilityHeterogeneityIncidenceIndividualInstitutesInstitutionInternationalLifeLiteratureMapsMedical ResearchMethodologyNational Institute of Mental HealthOdds RatioParkinson DiseasePatientsPhenotypePlayPopulationPredispositionRecurrenceResearch PersonnelResourcesRoleSamplingSchizoaffective DisordersSchizophreniaSiblingsSourceSusceptibility GeneTechnologyVariantanalytical methodbasecase controlcohortcostdisabilityfollow-upfollower of religion Jewishgenetic risk factorgenetic variantgenome sequencinggenome wide association studygenome-widemalignant breast neoplasmmembermethod developmentnext generation sequencingnovelpublic health relevancerare variantrepositoryrisk variantsevere mental illness
项目摘要
DESCRIPTION (provided by applicant):
Project Summary Schizophrenia (SZ) is characterized by high heritability (~80%) and elevated sibling recurrence ( s ~ 10), yet the identification of susceptibility genes has proven extremely challenging. This application entitled "Next Generation Sequencing for Disease Mapping in a Founder Population" aims to identify rare variants associated with illness by utilizing a unique cohort of Ashkenazi Jewish (AJ) patients with schizophrenia/schizoaffective disorder (n~1000) and well-matched Ashkenazi controls (n~2000). These samples already have GWAS data (Illumina Omni1-Quad platform) generated as part of a previously-funded project (RC2 MH089964). In this proposal, we intend to utilize next-generation sequencing to obtain high-quality, high-depth (>50x) whole-genome data from 300 cases and 500 controls selected from this cohort for maximum genomic informativeness, based on a novel genomewide haplotype sharing approach applied to the GWAS data. Due to the limited number of founders in the Ashkenazi population, we will then be able to impute >80% of all genomic variation back into the full set of samples. By contrast, the same number of samples derived from outbred European or European-American populations would permit imputation of only 20-25% of the total population variability. This imputation, combined with additional planned genotyping in the full cohort, will greatly enhance power to detect significantly associated rare variants using both single-marker and collapsing statistical approaches. Replication and extension will then be performed in publicly available SZ cohorts (e.g., GAIN) containing both AJ and non-AJ cases and controls. All DNA has already been collected and is immediately ready for sequencing. Based on our preliminary GWAS data, as well as literature from other common, complex disorders such as breast cancer and Parkinson's disease, the AJ population is likely to be enriched for a subset rare susceptibility alleles. Such alleles may therefore have higher allele frequencies and odds ratios than those detectable in other populations, providing enhanced power to detect disease-relevant loci. Notably, this enrichment can occur even in the absence of detectably increased incidence of these disorders in the AJ population. In addition to providing informative data on the role of rare variants in the genetic architecture of this devastating and disabling disorder, sequencing of the control cohort will provide an invaluable resource for future studies of many complex disorders. Moreover, computational methods development relevant to the ascertainment and interpretation of next-generation sequencing data will also be made available for sharing with the broader genetics/genomics community.
描述(由申请人提供):
项目摘要精神分裂症(SZ)具有较高的遗传率(~80%)和较高的兄弟姐妹复发率(S~10岁),但易感基因的鉴定已被证明具有极大的挑战性。这个名为“在创始人人群中绘制疾病图谱的下一代测序”的应用程序旨在通过利用一组独特的德系犹太人(AJ)精神分裂症/分裂情感障碍患者(n~1000)和匹配良好的德系犹太人对照(n~2000),识别与疾病相关的罕见变异。这些样本已经具有作为以前资助的项目(RC2 MH089964)的一部分生成的GWAS数据(Illumina Omni1-Quad Platform)。在这项提案中,我们打算利用下一代测序从300例病例和500例对照中获得高质量、高深度(50x)的全基因组数据,以获得最大的基因组信息量,这是基于一种应用于GWAS数据的新的全基因组单倍型共享方法。由于德系犹太人群体中创始人的数量有限,我们将能够将所有基因组变异的80%归因于完整的样本集。相比之下,从欧洲或欧美异种繁殖的种群中提取的相同数量的样本只允许归因于总种群变异性的20%-25%。这种归因,再加上全队列中额外计划的基因分型,将极大地增强使用单标记和折叠统计方法检测显著相关的罕见变异的能力。然后,将在包含AJ和非AJ病例和对照的公开可获得的SZ队列(例如,GAIN)中进行复制和推广。所有的DNA都已经收集好了,马上就可以测序了。根据我们初步的Gwas数据,以及其他常见的复杂疾病,如乳腺癌和帕金森病的文献,AJ人群很可能在稀有易感等位基因子集上得到丰富。因此,这些等位基因可能具有比其他人群中可检测到的等位基因频率和优势比更高的等位基因,从而增强了检测疾病相关基因座的能力。值得注意的是,即使在AJ人群中这些疾病的发病率没有明显增加的情况下,这种丰富也可能发生。除了提供有关罕见变异在这种毁灭性和致残性疾病的遗传结构中所起作用的信息数据外,对照队列的测序将为许多复杂疾病的未来研究提供宝贵的资源。此外,还将提供与确定和解释下一代测序数据相关的计算方法开发,以供更广泛的遗传学/基因组学社区共享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ariel Darvasi其他文献
Ariel Darvasi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ariel Darvasi', 18)}}的其他基金
Next Generation Sequencing for Disease Mapping in a Founder Population
用于创建人群疾病图谱的下一代测序
- 批准号:
9128294 - 财政年份:2013
- 资助金额:
$ 80.76万 - 项目类别:
Next Generation Sequencing for Disease Mapping in a Founder Population
用于创建人群疾病图谱的下一代测序
- 批准号:
8892256 - 财政年份:2013
- 资助金额:
$ 80.76万 - 项目类别:
Next Generation Sequencing for Disease Mapping in a Founder Population
用于创建人群疾病图谱的下一代测序
- 批准号:
8600973 - 财政年份:2013
- 资助金额:
$ 80.76万 - 项目类别:
Next Generation Sequencing for Disease Mapping in a Founder Population
用于创建人群疾病图谱的下一代测序
- 批准号:
9252711 - 财政年份:2013
- 资助金额:
$ 80.76万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 80.76万 - 项目类别:
Research Grant














{{item.name}}会员




