Mechanics of Bipolar Mitotic Spindle Assembly
双极有丝分裂纺锤体组装的力学
基本信息
- 批准号:8653586
- 负责人:
- 金额:$ 26.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAneuploidyAntineoplastic AgentsAreaBiological AssayBiomechanicsBiomedical ResearchCalibrationCell CycleCell physiologyCellsCharacteristicsChromosome SegregationChromosomesCommunitiesComplexConflict (Psychology)Congenital AbnormalityDataDevelopmentDynein ATPaseEquilibriumFilamentFutureGenomeGoalsHealthHumanKinesinKnowledgeLeadLengthLinkMapsMeasurementMeasuresMechanicsMediatingMethodsMicrotubulesMitosisMitoticMitotic spindleModelingMolecularMolecular MotorsMolecular TargetMotorNatureNeoplastic Cell TransformationPlayProcessPropertyProteinsProteomicsPublishingRegulationResearchResolutionRoleShapesSignal PathwaySignal TransductionSlideSpatial DistributionStructureSystemTechniquesTestingWorkbasecancer therapycrosslinkdesignfrontiergenetic regulatory proteininnovationnew therapeutic targetnovelresearch studysegregationtool
项目摘要
DESCRIPTION (provided by applicant): Bipolar mitotic spindle assembly is critically important for proper segregation of a duplicated genome. Most spindle components have now been identified, but the ways they self-organize and generate and respond to physical forces remain largely unexplored topics in basic biomedical research. This gap in our understanding of spindle assembly mechanics persists despite years of research in this area because very few studies have provided quantitative, systems-level information about the spindle or the forces it can produce. To address this gap we have proposed an integrated set of experimental approaches to investigate molecular and mechanical aspects of spindle assembly, with a focus on the microtubule-based motor cytoplasmic dynein. This motor plays critically important roles in determining spindle shape, but its multifunctional character, large size and structural complexity have made it a difficult subject to study, providing a small frontier in the otherwise well-explore field of mitosis. Based on preliminary data, we hypothesize that cell cycle-dependent interactions with other proteins regulate dynein function, conferring a specific ability to crosslik and slide antiparallel microtubules. By characterizing the composition of the responsible dynein-containing motor complex and the forces it generates, we hope to elucidate a mitotic function of dynein and, therefore, one that can be selectively targeted in dividing cells. To test our central hypothesis we propose three aims. The first uses a proteomics based screen to identify proteins whose interactions with dynein are either cell-cycle dependent or regulated by mitotic signaling pathways. In the second aim, microneedle-based force measurements will be used to quantify dynein-dependent forces generated during spindle assembly. Lastly, the third aim describes the design and calibration of a novel, genetically encoded force-probe for high-resolution mapping of sliding-filament forces within the spindle. Completion of the work proposed in these aims is expected to produce a fundamental advance in our basic understanding of dynein function and to identify molecular targets for the eventual development of new anti-cancer drugs. It will also provide much needed systems-level characterization of integrated spindle forces as well as quantitative information needed to resolve conflicting models of emergent spindle properties like bipolarity and length. In addition, due to their potential for broad application, development of th new methods and approaches proposed herein will greatly expand future studies aimed at characterizing mechanical forces and force- initiated signaling within cells.
描述(由申请人提供):两极有丝分裂纺锤体组装对于正确分离复制的基因组至关重要。大多数纺锤体组件现在已经被确定,但它们的自组织、产生和对物理力的反应的方式在基础生物医学研究中仍然是很大程度上未被探索的主题。尽管在这一领域进行了多年的研究,但我们对主轴装配力学的理解仍然存在差距,因为很少有研究提供关于主轴或它所能产生的力的定量的、系统级的信息。为了解决这一差距,我们提出了一套完整的实验方法来研究纺锤体组装的分子和机械方面,重点是基于微管的运动细胞质动力蛋白。这种马达在决定纺锤体形状方面起着至关重要的作用,但它的多功能特性、巨大的尺寸和结构的复杂性使其成为一个难以研究的课题,为原本探索得很好的有丝分裂领域提供了一个小小的前沿。基于初步数据,我们假设依赖于细胞周期的与其他蛋白质的相互作用调节动力蛋白功能,赋予交叉滑动和滑动反平行微管的特定能力。通过表征负责的含动力蛋白的运动复合体的组成和所产生的力,我们希望阐明动力蛋白的有丝分裂功能,从而阐明动力蛋白可以选择性地作为细胞分裂的靶点。为了检验我们的中心假设,我们提出了三个目标。第一种是基于蛋白质组学的筛选,以确定与动力蛋白相互作用的蛋白质,这些蛋白质要么依赖于细胞周期,要么受有丝分裂信号通路调节。在第二个目标中,将使用基于微针的力测量来量化在主轴组装过程中产生的动力蛋白依赖力。最后,第三个目标描述了一种新颖的、遗传编码力探头的设计和校准,用于高分辨率地标测主轴内的滑动细丝力。这些目标中提出的工作的完成有望从根本上促进我们对动力蛋白功能的基本理解,并为最终开发新的抗癌药物确定分子靶点。它还将提供迫切需要的系统级的综合主轴力的表征,以及解决主轴特性(如两极和长度)的冲突模型所需的定量信息。此外,由于它们具有广泛的应用潜力,本文提出的新方法和新途径的发展将极大地扩展未来旨在表征细胞内机械力和力启动信号的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSE C GATLIN其他文献
JESSE C GATLIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSE C GATLIN', 18)}}的其他基金
Mechanics of Microtubule Aster Growth and Positioning
微管 Aster 生长和定位的机制
- 批准号:
10254440 - 财政年份:2020
- 资助金额:
$ 26.43万 - 项目类别:
Mechanics of Microtubule Aster Growth and Positioning: Instrumentation Supplement
微管 Aster 生长和定位的力学:仪器补充
- 批准号:
10798982 - 财政年份:2020
- 资助金额:
$ 26.43万 - 项目类别:
Mechanics of Microtubule Aster Growth and Positioning
微管 Aster 生长和定位的机制
- 批准号:
10456883 - 财政年份:2020
- 资助金额:
$ 26.43万 - 项目类别:
Mechanics of Microtubule Aster Growth and Positioning
微管 Aster 生长和定位的机制
- 批准号:
10674011 - 财政年份:2020
- 资助金额:
$ 26.43万 - 项目类别:
Intrinsic Spindle Mechanisms to Insure Bipolarity
确保双极性的固有主轴机制
- 批准号:
7382587 - 财政年份:2007
- 资助金额:
$ 26.43万 - 项目类别:
Intrinsic Spindle Mechanisms to Insure Bipolarity
确保双极性的固有主轴机制
- 批准号:
7223135 - 财政年份:2007
- 资助金额:
$ 26.43万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别: