Gene Expression Signatures to Predict Treatment Response in Systemic Sclerosis
预测系统性硬化症治疗反应的基因表达特征
基本信息
- 批准号:8834415
- 负责人:
- 金额:$ 63.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-06 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAlgorithmsArchivesAutoantibodiesAutoimmune DiseasesBiochemical PathwayBioinformaticsBiological MarkersBiopsyBlood VesselsCellceptClassificationClinicalClinical Course of DiseaseClinical TrialsDNA Microarray ChipDevelopmentDiagnosisDiagnosticDiseaseEnrollmentEtiologyExposure toFibrosisFreezingGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGleevecGoalsGoldHealthHeartHereditary DiseaseHeterogeneityImatinib mesylateImmunosuppressive AgentsIndividualInflammatoryLaboratoriesLungMapsMeasuresMolecularMolecular ProfilingNatureObservational StudyOrganOutcomeOutcome MeasureParaffin EmbeddingPathogenesisPathway interactionsPatient SelectionPatientsPharmaceutical PreparationsPharmacologic SubstancePhasePhysiciansPilot ProjectsPublishingRelative (related person)Research DesignRiskSamplingSclerodermaServicesSignal PathwaySkinSystemic SclerodermaTestingTranslatingTyrosine Kinase InhibitorValidationWorkbaseclinical phenotypecohortcostdesigndrug developmenteffective therapyeffectiveness trialefficacy trialimprovedinsightlymphocyte proliferationmalignant breast neoplasmmycophenolate mofetilnano-stringnovelnovel diagnosticsopen labelpatient populationprospectiveresearch clinical testingresponserisk benefit ratiostandard of caretechnology developmenttooltreatment planningtreatment response
项目摘要
DESCRIPTION (provided by applicant): Today, systemic sclerosis (SSc) clinical trials generally include all subsets; some may benefit, others do not, confounding measures of efficacy. Because each expression subset has a different underlying deregulated molecular pathway, no single drug is expected to benefit all patients i.e. rational patient selection is required to facilitate drug development. Further, a quantitative measure of clinical outcome and endpoints will enable a scientific measure of trial effectiveness and avoid the difficulties associated with the cyclic nature of SSc. For example, response to imatinib mesylate (Gleevec(R)), a tyrosine kinase inhibitor and to mycophenolate mofetil (Cellcept), an attenuator of lymphocyte proliferation, can be quantitatively measured by gene expression. Finally, insights into the molecular pathways defining each subtype will enable us to identify and potentially design new drugs. Beyond drug development, subtyping will help individual patients and their doctors by allowing an individualized treatment plan informed by each patient's subtype. Together, these benefits are both exciting and compelling, and are fundamentally changing what it means to be diagnosed with SSc. This work will provide insights into the pathogenesis of the disease that may influence the development of new treatments by other groups or pharmaceutical companies. The immediate result of this study is the validation and prospective clinical testing of gene expression biomarkers on a new platform for predicting treatment response in SSc. Development of this technology into a clinical diagnostic tool and service will significantly improve the management and ultimately the health of patients with SSc.
描述(由申请人提供):今天,系统性硬化症(SSc)临床试验通常包括所有子集;一些可能受益,另一些则没有,混淆疗效指标。由于每个表达亚群具有不同的潜在失调分子途径,因此预计没有单一药物可使所有患者受益,即需要合理的患者选择以促进药物开发。此外,临床结局和终点的定量测量将使试验有效性的科学测量成为可能,并避免与SSc的周期性相关的困难。例如,对甲磺酸伊马替尼(Gleevec(R))(一种酪氨酸激酶抑制剂)和对吗替麦考酚酯(Cellcept)(一种淋巴细胞增殖的衰减剂)的应答可以通过基因表达来定量测量。最后,深入了解定义每个亚型的分子途径将使我们能够识别和潜在地设计新药。除了药物开发之外,亚型将通过允许根据每个患者的亚型制定个性化治疗计划来帮助个体患者及其医生。总之,这些好处既令人兴奋又令人信服,并从根本上改变了被诊断患有SSc的意义。这项工作将提供深入了解疾病的发病机制,可能会影响其他团体或制药公司开发新的治疗方法。这项研究的直接结果是在一个新的平台上对基因表达生物标志物进行验证和前瞻性临床测试,以预测SSc的治疗反应。将这项技术发展为临床诊断工具和服务将显着改善SSc患者的管理并最终改善其健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL W FANGER其他文献
MICHAEL W FANGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL W FANGER', 18)}}的其他基金
Therapy of transplantation-induced oxidative injury using polymeric antioxidants
使用聚合抗氧化剂治疗移植引起的氧化损伤
- 批准号:
8951662 - 财政年份:2015
- 资助金额:
$ 63.91万 - 项目类别:
Destroying the HIV-1 provirus by utilizing components of the CRISPR/Cas system
利用 CRISPR/Cas 系统的组件破坏 HIV-1 原病毒
- 批准号:
8659862 - 财政年份:2014
- 资助金额:
$ 63.91万 - 项目类别:
Therapy of transplantation-induced oxidative injury using polymeric antioxidants
使用聚合抗氧化剂治疗移植引起的氧化损伤
- 批准号:
8780189 - 财政年份:2014
- 资助金额:
$ 63.91万 - 项目类别:
Combination immunotherapies for the treatment of melanoma
用于治疗黑色素瘤的联合免疫疗法
- 批准号:
8453586 - 财政年份:2013
- 资助金额:
$ 63.91万 - 项目类别:
Preclinical Development of a Novel Plaque-Regressing Therapy For Atherosclerosis
新型斑块消退疗法治疗动脉粥样硬化的临床前开发
- 批准号:
8394110 - 财政年份:2012
- 资助金额:
$ 63.91万 - 项目类别:
Scleroderma Subtyping from Fresh and Archived Biopsies using NextGen Sequencing
使用 NextGen 测序从新鲜和存档的活检中进行硬皮病亚型分析
- 批准号:
8200724 - 财政年份:2011
- 资助金额:
$ 63.91万 - 项目类别:
Development of a Novel Anti-Inflammatory Therapeutic Based on Antithrombin
基于抗凝血酶的新型抗炎治疗药物的开发
- 批准号:
8058061 - 财政年份:2011
- 资助金额:
$ 63.91万 - 项目类别:
Gene Expression Signatures to Predict Treatment Response in Systemic Sclerosis
预测系统性硬化症治疗反应的基因表达特征
- 批准号:
8931885 - 财政年份:2011
- 资助金额:
$ 63.91万 - 项目类别:
ChNKG2D-Targeted Cellular Cancer Therapy: Phase I Clinical Trial
ChNKG2D 靶向细胞癌症治疗:I 期临床试验
- 批准号:
8394167 - 财政年份:2010
- 资助金额:
$ 63.91万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 63.91万 - 项目类别:
Research Grant