Computational tools for the prediction of protein orientations on material surfac
用于预测材料表面蛋白质方向的计算工具
基本信息
- 批准号:8445083
- 负责人:
- 金额:$ 7.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlbuminsAlgorithmsAmino AcidsAntibodiesBiological AssayBiotechnologyCollaborationsComplementComplexComputer softwareDataData AnalysesDevelopmentElementsFibrinogenFilmFrequenciesG-substrateGamblingGenerationsImageryIonsLaboratoriesLettersLiteratureMeasuresMedical Device DesignsMembrane ProteinsModelingMolecularMolecular ConformationMuramidaseMyoglobinPhasePhysiologic pulseProcessProteinsProteusResearch PersonnelRoentgen RaysRunningSoftware ToolsSpecialistSpecific qualifier valueSpectrometrySpectrometry, Mass, Secondary IonSpectrum AnalysisStructureSumSurfaceTechniquesTestingTimeVisualabsorptionbasecomputerized data processingcomputerized toolsdesignimprovedinsightinterestmolecular dynamicspublic health relevanceresearch studysimulationthree dimensional structuretooluser-friendlyvon Willebrand Factorweb site
项目摘要
DESCRIPTION (provided by applicant): Understanding the orientation of proteins on material surfaces is of crucial importance for the design of material surfaces with applications in biotechnology. However, the determination of protein orientation at atomic level of detail remains a challenge. Various surface analysis techniques, like flight secondary ion mass spectrometry, sum frequency generation vibrational spectrometry and near-edge X-ray absorption fine structure, have been developed to probe the orientation of proteins adsorbed onto surfaces. However, the spectra generated by this type of experiments can be very complex and extrapolating a result can be difficult if not impossible without suitable post-processing software. In this project, software tools are developed which make use of available three-dimensional structures of proteins to predict the spectrum that would be measured given a particular orientation of the protein on a surface. Furthermore, a publicly accessible online server will be setup which, using Monte Carlo simulations, will predict the orientation of a protei uploaded by a user on a selected surface. The Monte Carlo search can be guided by including available experimental data in order to refine a model suggested by the experiments or discriminate the most likely orientation when contradicting models are suggested by different techniques. If no experimental data is present, the server will provide an estimate of the protein orientation that can be either used to generate hypotheses or as the starting conformation for more complex calculations of the protein-surface interaction.
描述(由申请人提供):了解蛋白质在材料表面上的方向对于生物技术应用的材料表面设计至关重要。然而,在原子水平细节上确定蛋白质方向仍然是一个挑战。各种表面分析技术,如飞行二次离子质谱、和频振动光谱和近边X射线吸收精细结构,已被开发用于探测吸附在表面上的蛋白质的方向。然而,此类实验生成的光谱可能非常复杂,如果没有合适的后处理软件,推断结果即使不是不可能,也可能很困难。在该项目中,开发的软件工具利用可用的蛋白质三维结构来预测在给定表面上蛋白质的特定方向的情况下将测量的光谱。此外,将设置一个可公开访问的在线服务器,该服务器将使用蒙特卡罗模拟来预测用户在选定表面上上传的蛋白质的方向。蒙特卡罗搜索可以通过包括可用的实验数据来指导,以便改进实验建议的模型,或者当不同技术建议矛盾的模型时区分最可能的方向。如果不存在实验数据,服务器将提供蛋白质方向的估计,该估计可用于生成假设或作为蛋白质-表面相互作用的更复杂计算的起始构象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wendy E Thomas其他文献
Wendy E Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wendy E Thomas', 18)}}的其他基金
Development of a library of regulated Actibodies
开发受监管的 Actibodies 库
- 批准号:
8422966 - 财政年份:2012
- 资助金额:
$ 7.73万 - 项目类别:
Development of a library of regulated Actibodies
开发受监管的 Actibodies 库
- 批准号:
8227141 - 财政年份:2012
- 资助金额:
$ 7.73万 - 项目类别:
Regulation of von Willebrand Factor - platelet binding by Force and Interdomain I
通过力和域间 I 调节血管性血友病因子 - 血小板结合
- 批准号:
8197730 - 财政年份:2010
- 资助金额:
$ 7.73万 - 项目类别:
Regulation of von Willebrand Factor - platelet binding by Force and Interdomain I
通过力和域间 I 调节血管性血友病因子 - 血小板结合
- 批准号:
8771444 - 财政年份:2010
- 资助金额:
$ 7.73万 - 项目类别:
Regulation of von Willebrand Factor - platelet binding by Force and Interdomain I
通过力和域间 I 调节血管性血友病因子 - 血小板结合
- 批准号:
8024519 - 财政年份:2010
- 资助金额:
$ 7.73万 - 项目类别:
Regulation of von Willebrand Factor - platelet binding by Force and Interdomain I
通过力和域间 I 调节血管性血友病因子 - 血小板结合
- 批准号:
8585085 - 财政年份:2010
- 资助金额:
$ 7.73万 - 项目类别:
Regulation of von Willebrand Factor - platelet binding by Force and Interdomain I
通过力和域间 I 调节血管性血友病因子 - 血小板结合
- 批准号:
8389604 - 财政年份:2010
- 资助金额:
$ 7.73万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.73万 - 项目类别:
Research Grant














{{item.name}}会员




