Robotic Natural Orifice Skull Base Surgery

机器人自然孔道颅底手术

基本信息

  • 批准号:
    8561779
  • 负责人:
  • 金额:
    $ 49.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The objective of this proposal is to reduce the invasiveness and increase the safety of surgical procedures at the skull base by introducing a new robotic system for natural orifice skull base surgery. Despite compelling patient benefits compared to highly invasive transfacial and transcranial approaches, the endonasal approach - in which surgical instruments are deployed to the skull base through a nostril and the nasal cavities - is only used in a small percentage of cases due to limitations in current surgical instrumentation. The proposed system aims to remedy this through a new kind of surgical robot with needle-diameter, tentacle-like instruments. It will be able to transport surgical tools and cameras along curvilinear paths and work "around corners" (e.g. enable physicians to resect tumors by curving around the carotid arteries), while providing the physician with a comfortable and intuitive control interface conceptually similar to that of the da Vinci Surgical System. Such a robot, with instruments made using concentric, curved, elastic tubes, has the potential to profoundly impact public health because: (1) incidence is high - 15-20% of all primary brain tumors occur in the pituitary and 1 in 5 people will develop one, with 1 in 120 requiring skull base surgery (>1cm tumor); (2) traditional approaches are highly invasive - they require either deconstruction of facial tissue and bone, or a craniotomy and associated trauma to the brain; and (3) there exists an underutilized, yet clinically proven alternative - the endonasal approach, which is not more widely deployed due to the difficulty of accomplishing it using conventional surgical tools. The proposed system will be developed through three Specific Aims. Aim 1 involves measuring surgical forces and geometry and using this information with mechanics models to optimally design the proposed robotic system. Aim 2 addresses developing control, force feedback, and assistance algorithms for the surgeon, together with visual displays showing endoscope images, registered preoperative medical images, and robot instrument locations. Magnetic tracking will enable force sensing and enhance the accuracy of surgical navigation. Aim 3 consists of experiments designed to evaluate robot performance in reaching surgically relevant locations, and in removing tissue in laboratory settings, in skull phantoms, and in cadaver studies. The final objective of this R01 is a fully functional robotic system with al the components necessary for operating room use, to assist the surgeon in natural orifice (i.e. transnasal) skull base surgery.
描述(由申请人提供):本提案的目的是通过引入一种用于自然腔道颅底手术的新型机器人系统,降低颅底外科手术的侵入性并提高其安全性。尽管与高侵入性经面和经颅入路相比,鼻内入路(其中手术器械通过鼻孔和鼻腔部署到颅底)具有令人信服的患者受益,但由于当前手术器械的限制,鼻内入路仅用于一小部分病例。该系统的目的是通过一种新的手术机器人与针直径,触手状仪器来弥补这一点。它将能够沿着曲线路径运输手术工具和摄像机,并“绕角”工作(例如,使医生能够通过绕颈动脉弯曲来切除肿瘤),同时为医生提供舒适直观的控制界面,在概念上类似于达芬奇芬奇手术系统。这样的机器人配备了使用同心、弯曲、弹性管制成的仪器,有可能对公共卫生产生深远影响,因为:(1)发病率很高-所有原发性脑肿瘤中有15-20%发生在垂体中,五分之一的人会患上脑肿瘤,120人中有1人需要进行颅底手术(2)传统的方法是高度侵入性的-它们需要面部组织和骨骼的解构,或者开颅术和对大脑的相关创伤;以及(3)存在一种未充分利用的、但经临床证实的替代方案-鼻内途径,由于难以使用传统的外科工具来实现,该途径没有被更广泛地使用。拟议的系统将通过三个具体目标来开发。目标1涉及测量手术力和几何形状,并使用此信息与力学模型,以优化设计所提出的机器人系统。目标2致力于为外科医生开发控制、力反馈和辅助算法,以及显示内窥镜图像、配准的术前医学图像和机器人器械位置的视觉显示器。磁跟踪将实现力感测并提高手术导航的准确性。目标3包括实验设计,以评估机器人的性能,达到手术相关的位置,并在实验室环境中,在头骨幻影,并在尸体研究中去除组织。本R 01的最终目标是一个功能齐全的机器人系统,具有手术室使用所需的所有组件,以协助外科医生进行自然腔道(即经鼻)颅底手术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert James Webster其他文献

Robert James Webster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert James Webster', 18)}}的其他基金

Safe, Rapid Access to the Internal Auditory Canal for Acoustic Neuroma
安全、快速地进入内耳道治疗听神经瘤
  • 批准号:
    8500735
  • 财政年份:
    2013
  • 资助金额:
    $ 49.16万
  • 项目类别:
Robotic Natural Orifice Skull Base Surgery
机器人自然孔道颅底手术
  • 批准号:
    9066645
  • 财政年份:
    2013
  • 资助金额:
    $ 49.16万
  • 项目类别:
Robotic Natural Orifice Skull Base Surgery
机器人自然孔道颅底手术
  • 批准号:
    8687650
  • 财政年份:
    2013
  • 资助金额:
    $ 49.16万
  • 项目类别:
Safe, Rapid Access to the Internal Auditory Canal for Acoustic Neuroma
安全、快速地进入内耳道治疗听神经瘤
  • 批准号:
    8610913
  • 财政年份:
    2013
  • 资助金额:
    $ 49.16万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.16万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了