Online learning platform: introducing clinicians and researchers to metabolomics
在线学习平台:向临床医生和研究人员介绍代谢组学
基本信息
- 批准号:8717687
- 负责人:
- 金额:$ 10.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-18 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdvertisingAlgorithmsBasic ScienceClinicalClinical ResearchClinical SciencesComplementComputer softwareComputersEducationEducation ProjectsEducational CurriculumEducational workshopEnsureEvaluationExerciseFamiliarityFundingHealth ProfessionalIndividualInstitutionInstructional TechnologyInvestmentsKnowledgeLearningLearning ModuleLinkMissionMonitorOnline SystemsProceduresReadingReportingResearchResearch PersonnelResourcesScheduleScienceSocietiesSolidSpeedSystemTechniquesTechnologyThinkingTimeTraining ProgramsTranslatingTravelUnited States National Institutes of HealthWorkbaseflexibilityfollow-upimprovedinterestmetabolomicsnovelpractical applicationprogramsremediationskillssoundtooluser-friendly
项目摘要
DESCRIPTION (provided by applicant): We propose the web-based delivery of a metabolomics training program for researchers and clinicians who are either not yet using metabolomic approaches or are still new to the field. We will develop a comprehensive set of learning modules helping clinicians and researchers to read about metabolomic research and become interested in incorporating metabolomic approaches into their own work. Each program module will cover carefully selected topics, allowing learners to improve their knowledge with modest time investments required. The program will provide both foundational concepts of metabolomics and typical applications for research and clinical uses. The materials will translate the most current knowledge and practical uses into an instructionally sound and user-friendly format. A limitation of conventional presentations and workshops is that they have to be scheduled for many users at the same time and usually require attendees to spend more time traveling than learning. This keeps many away who would greatly benefit and might have a better basis for using metabolomic tools in some direct or indirect way. The emphasis of the program modules will be on core principles and practical applications - how to translate the understanding of metabolomic principles into productive research and clinical benefits. Learners completing any program module will understand how to start reading about metabolomic research findings and planning the use of current metabolomic resources without being unduly encumbered by arcane details. Nonetheless, in our program, information about key metabolomic techniques and procedures will be available for review as needed. The modular and flexible format of our instructional units will optimize learning efficacy for clinicians and researchers by facilitating the brief and tightly focused coverage of critical metabolomic topics for the increasingly busy health professional. We will implement a software strategy that will tailor content delivery based on the learner's pre-existing knowledge. Built-in remediation components, based on concurrent monitoring of learning efficacy, will strengthen the efficiency of our instructional approach for all learners. We expect that efficient use of the learner's time will increase use and retention of this material. With NIH support, the material will be available
to all US clinicians and researchers.
描述(由申请人提供):我们建议为尚未使用代谢组学方法或仍是该领域新成员的研究人员和临床医生提供基于网络的代谢组学培训计划。我们将开发一套全面的学习模块,帮助临床医生和研究人员阅读代谢组学研究,并有兴趣将代谢组学方法纳入自己的工作。 每个课程模块将涵盖精心挑选的主题,让学习者提高他们的知识与所需的适度时间投资。该计划将提供代谢组学的基本概念和研究和临床应用的典型应用。这些材料将把最新的知识和实际用途转化为合理和方便用户的格式。传统的演示和研讨会的局限性在于,它们必须同时为许多用户安排,并且通常要求与会者花费更多的时间旅行而不是学习。这让许多人远离谁将大大受益,并可能有一个更好的基础,使用代谢组学工具,在一些直接或间接的方式。程序模块的重点将是核心原则和实际应用-如何将代谢组学原理的理解转化为生产性研究和临床效益。学习者完成任何程序模块将了解如何开始阅读有关代谢组学的研究成果和计划使用目前的代谢组学资源,而不会被不适当的阻碍《双城之战》的细节。尽管如此,在我们的计划中,有关关键代谢组学技术和程序的信息将根据需要进行审查。 我们的教学单元的模块化和灵活的格式将优化临床医生和研究人员的学习效果,促进日益繁忙的忙碌健康专业人士的关键代谢组学主题的简短和紧密的重点覆盖。我们将实施一项软件战略,根据学习者已有的知识量身定制内容交付。内置的补救组件,同时监测学习效果的基础上,将加强我们的教学方法为所有学习者的效率。我们希望有效地利用学习者的时间将增加使用和保留这一材料。 在NIH的支持下,该材料将可用
所有美国临床医生和研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARTIN KOHLMEIER其他文献
MARTIN KOHLMEIER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARTIN KOHLMEIER', 18)}}的其他基金
Online learning platform: introducing clinicians and researchers to metabolomics
在线学习平台:向临床医生和研究人员介绍代谢组学
- 批准号:
8416746 - 财政年份:2012
- 资助金额:
$ 10.87万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Continuing Grant














{{item.name}}会员




