Computational tools to analyze SNP data from patients with mental illness

分析精神疾病患者 SNP 数据的计算工具

基本信息

  • 批准号:
    8839425
  • 负责人:
  • 金额:
    $ 12.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-17 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The broad, long-term objective of the proposed research is to develop and market a commercial software product that can be used to facilitate the analysis of genetic changes in order to elucidate chromosomal abnormalities that underlie diseases such as autism spectrum disorder, bipolar disorder, and schizophrenia. Recent technological advances allow samples of DNA from patients to be analyzed on single nucleotide polymorphism (SNP) arrays, generating up to millions of data points from each sample. In parallel, next- generation sequencing (NGS) of whole genomes (or whole exomes) allows the determination of sequence data from individuals with mental health (or other) diseases, as well as sequence data from affected and unaffected family members. These data must be analyzed to identify chromosomal abnormalities (e.g. DNA mutations, hemizygous or homozygous deletions, or translocations) that confer risk for these diseases. Software such as Partek(R) Genomics Suite" (GS) offers a robust set of tools to perform data analysis and visualization. A goal of this proposal is to enhance the Partek GS and Partek Flow" commercial products by introducing innovative, practically useful software modules that define genetic relatedness in studies based on SNP and/or NGS data. Specific Aim 1 is to develop and incorporate methods for the determination of genetic relatedness based on SNP data (including data sets of pedigrees and large populations). These methods allow the relationship between all pairs of individuals in a data set to be determined with high accuracy (even for large studies with thousands of samples). Specific Aim 2 is to develop and incorporate methods for the determination of genetic relatedness based on NGS data, including whole genome sequences of individuals. These methods will provide a significant new dimension to the analysis of genome sequence data, facilitating the identification of variants that are relevant to disease. For Specific Aim 3 we will apply these novel methods to two data sets: whole exome sequence data from individuals with autism (data from over 800 trios obtained from dbGaP), and SNP and whole genome or whole exome sequences from quintets of father/mother/child1/child2/child3 in which at least one child is diagnosed with autism. These studies will demonstrate the utility of the novel software methods and demonstrate how they can facilitate the discovery of genetic variants that underlie autism and other mental health disorders.
描述(由申请人提供):拟议研究的广泛,长期目标是开发和销售一种商业软件产品,可用于促进遗传变化的分析,以阐明导致自闭症谱系障碍,双相情感障碍和精神分裂症等疾病的染色体异常。最近的技术进步允许在单核苷酸多态性(SNP)阵列上分析患者的DNA样本,从每个样本中生成多达数百万个数据点。平行地,全基因组(或全外显子组)的下一代测序(NGS)允许确定来自患有精神健康(或其他)疾病的个体的序列数据,以及来自受影响和未受影响的家庭成员的序列数据。必须对这些数据进行分析,以确定染色体异常(例如DNA突变、半合子或纯合子缺失或易位),这些异常会导致这些疾病的风险。诸如Partek(R)Genomics Suite”(GS)之类的软件提供了一套强大的工具来执行数据分析和可视化。该提案的一个目标是通过引入创新的、实际有用的软件模块来增强Partek GS和Partek Flow的商业产品,这些软件模块在基于SNP和/或NGS数据的研究中定义遗传相关性。具体目标1是开发和整合基于SNP数据(包括家系和大群体的数据集)确定遗传相关性的方法。这些方法允许以高精度确定数据集中所有个体对之间的关系(即使对于具有数千个样本的大型研究)。具体目标2是开发和整合基于NGS数据(包括个体的全基因组序列)确定遗传相关性的方法。这些方法将为基因组序列数据的分析提供一个重要的新维度,有助于识别与疾病相关的变异。为 具体目标3我们将这些新方法应用于两个数据集:来自自闭症个体的全外显子组序列数据(来自dbGaP获得的800多个trios的数据),以及来自父亲/母亲/孩子1/孩子2/孩子3的五联体的SNP和全基因组或全外显子组序列,其中至少有一个孩子被诊断患有自闭症。这些研究将展示新软件方法的实用性,并展示它们如何促进发现自闭症和其他精神健康疾病的遗传变异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Downey其他文献

Thomas Downey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Downey', 18)}}的其他基金

Computational tools to analyze SNP data from patients with mental illness
分析精神疾病患者 SNP 数据的计算工具
  • 批准号:
    8651537
  • 财政年份:
    2009
  • 资助金额:
    $ 12.09万
  • 项目类别:
Computational tools to analyze SNP data from patients with mental illness
分析精神疾病患者 SNP 数据的计算工具
  • 批准号:
    7670133
  • 财政年份:
    2009
  • 资助金额:
    $ 12.09万
  • 项目类别:
Computational tools to analyze SNP data from patients with mental illness
分析精神疾病患者 SNP 数据的计算工具
  • 批准号:
    8524976
  • 财政年份:
    2009
  • 资助金额:
    $ 12.09万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了