AMBER/PBSA: An Open-Source Computer Program for Accurate and Scalable Solvation Analysis ofBiomolecules

AMBER/PBSA:用于精确且可扩展的生物分子溶剂化分析的开源计算机程序

基本信息

  • 批准号:
    8888032
  • 负责人:
  • 金额:
    $ 28.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Atomistic simulations of biomolecules provide a detailed view of structure and dynamics that complement experiments. Increased conformational sampling, enabled by new algorithms and growth in computer power, now allows a much broader range of events to be observed, providing critical insights, largely inaccessible to experiments. Advancements in implicit solvation treatments have furthered the simulation reach to a broader range of studies of biomolecular structure, dynamics and function, including protein folding and misfolding, protein structure prediction, protein-ligand binding, enzyme mechanisms, and drug design. The AMBER/PBSA program is an open-source computer program for implicit solvation modeling of biomolecules. In this project, we propose to continue the maintenance and improvement of the AMBER/PBSA program by (1) growing and improving the AMBER/PBSA program in response to suggestions by our users; (2) developing and integrating lightweight analysis tools to facilitate better molecular simulations; (3) developing dielectric model for complex systems without apparent solvent/solute interface; and (4) continuing to validate the PB models.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RAY LUO其他文献

RAY LUO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RAY LUO', 18)}}的其他基金

Multi-scaled Modeling of Electrostatic and Polarization Effects in Biomolecules
生物分子静电和极化效应的多尺度建模
  • 批准号:
    10000166
  • 财政年份:
    2019
  • 资助金额:
    $ 28.73万
  • 项目类别:
Multi-scaled Modeling of Electrostatic and Polarization Effects in Biomolecules
生物分子静电和极化效应的多尺度建模
  • 批准号:
    10471300
  • 财政年份:
    2019
  • 资助金额:
    $ 28.73万
  • 项目类别:
Multi-scaled Modeling of Electrostatic and Polarization Effects in Biomolecules
生物分子静电和极化效应的多尺度建模
  • 批准号:
    10250389
  • 财政年份:
    2019
  • 资助金额:
    $ 28.73万
  • 项目类别:
AMBER/PBSA: An Open-Source Computer Program for Accurate and Scalable Solvation A
AMBER/PBSA:用于精确且可扩展求解的开源计算机程序 A
  • 批准号:
    7855500
  • 财政年份:
    2010
  • 资助金额:
    $ 28.73万
  • 项目类别:
AMBER/PBSA: An Open-Source Computer Program for Accurate and Scalable Solvation A
AMBER/PBSA:用于精确且可扩展求解的开源计算机程序 A
  • 批准号:
    8260360
  • 财政年份:
    2010
  • 资助金额:
    $ 28.73万
  • 项目类别:
AMBER/PBSA: An Open-Source Computer Program for Accurate and Scalable Solvation Analysis ofBiomolecules
AMBER/PBSA:用于精确且可扩展的生物分子溶剂化分析的开源计算机程序
  • 批准号:
    9015448
  • 财政年份:
    2010
  • 资助金额:
    $ 28.73万
  • 项目类别:
AMBER/PBSA: An Open-Source Computer Program for Accurate and Scalable Solvation A
AMBER/PBSA:用于精确且可扩展求解的开源计算机程序 A
  • 批准号:
    8464744
  • 财政年份:
    2010
  • 资助金额:
    $ 28.73万
  • 项目类别:
AMBER/PBSA: An Open-Source Computer Program for Accurate and Scalable Solvation A
AMBER/PBSA:用于精确且可扩展求解的开源计算机程序 A
  • 批准号:
    8052808
  • 财政年份:
    2010
  • 资助金额:
    $ 28.73万
  • 项目类别:
Determinants of Folding Mechanism in Small Proteins
小蛋白质折叠机制的决定因素
  • 批准号:
    6822504
  • 财政年份:
    2004
  • 资助金额:
    $ 28.73万
  • 项目类别:
Determinants of Folding Mechanism in Small Proteins
小蛋白质折叠机制的决定因素
  • 批准号:
    7103497
  • 财政年份:
    2004
  • 资助金额:
    $ 28.73万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了