Cancer Recurrence: Detection in Administrative Data, Incidence, and Costs

癌症复发:管理数据、发病率和成本的检测

基本信息

  • 批准号:
    8418072
  • 负责人:
  • 金额:
    $ 39.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-03-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): While some cancer deaths are attributable to progression of the primary disease, many, if not the majority, are due to recurrent metastatic cancer that develops after successful definitive therapy for earlier stage disease. Most tumor registries, including SEER, do not capture recurrence. Therefore, remarkably little is known about the population-based incidence or patterns and outcomes of care for advanced recurrent cancer. A valid and reliable algorithm for identifying such recurrences in administrative data would enable a literal explosion of comparative effectiveness research on this common, costly, and lethal condition. In particular, an algorithm that could be used to identify recurrence in administrative data would make it possible to (1) conduct studies using disease-free survival as an outcome, and (2) would enable the identification of inception cohorts in whom to study patterns and outcomes of care for advanced recurrent disease. Through an existing multidisciplinary collaboration between Dana-Farber Cancer Institute and Cancer Research Network investigators, we have made considerable progress on the development of a recurrence algorithm, working in two unique data sets that contain complete claims linked to gold standard data on recurrence. To date, we have shown that published recurrence identification strategies have unacceptably low sensitivity and specificity in our recent, population-based data sets, and have developed a highly promising two-phase probabilistic model that first determines the probability of recurrence and then estimates the date on which it occurred. We now propose to build on this work, conducting further development and validation of the algorithm, and then applying it to generate policy-relevant data on the public health burden imposed by recurrent advanced cancer. Specifically, we will: (1) complete the development of a candidate algorithm for detecting recurrence after definitive therapy of non-metastatic lung, colorectal, breast, and prostate cancer by incorporating use of cross-validation estimates and rigorously assessing algorithm performance~ (2) employ novel methods to directly and indirectly validate the algorithm in several entirely new data sets~ and (3) apply the validated algorithm to estimate the proportion of all-cause mortality attributable to recurrence and the total annualized costs of care for patients with recurrent disease, compared to patients presenting with advanced disease at diagnosis. As more cancer patients survive and survive longer, the population at risk for recurrence increases. Our algorithm will enable a new generation of research on the effectiveness, quality, and outcomes of cancer care that takes into account this sentinel event in the cancer trajectory. In our applied studies, we will begin to capitalize on this opportunity by measuring the impact of this condition on the public health and the consumption of societal resources.
描述(由申请人提供):虽然一些癌症死亡可归因于原发性疾病的进展,但许多(如果不是大多数)癌症死亡是由于早期疾病的成功确定性治疗后发生的复发性转移性癌症。大多数肿瘤登记研究,包括SEER,都没有记录复发情况。因此,对基于人群的晚期复发性癌症的发病率或模式和护理结果知之甚少。一个有效和可靠的算法来识别管理数据中的这种复发,将使这种常见的,昂贵的,致命的条件下的比较有效性研究的字面爆炸。特别是,一种可用于识别管理数据中复发的算法将使以下成为可能:(1)使用无病生存期作为结局进行研究,以及(2)将能够识别研究晚期复发性疾病护理模式和结局的初始队列。通过Dana-Farber癌症研究所和癌症研究网络研究人员之间现有的多学科合作,我们在复发算法的开发方面取得了相当大的进展,在两个独特的数据集上工作,这些数据集包含与复发金标准数据相关的完整声明。到目前为止,我们已经表明,在我们最近的基于人群的数据集中,已发表的复发识别策略具有不可接受的低灵敏度和特异性,并开发了一个非常有前途的两阶段概率模型,首先确定复发的概率,然后估计发生的日期。我们现在建议在这项工作的基础上,对算法进行进一步的开发和验证,然后将其应用于生成复发性晚期癌症造成的公共卫生负担的政策相关数据。 具体而言,我们将:(1)通过结合使用交叉验证估计和严格评估算法性能,完成非转移性肺癌、结直肠癌、乳腺癌和前列腺癌确定性治疗后复发检测候选算法的开发~(2)采用新方法在几个全新的数据集中直接和间接验证算法~(3)应用 评估复发性疾病患者与诊断时表现为晚期疾病的患者相比,复发性疾病患者的全因死亡率比例和年度护理总成本的有效算法。随着越来越多的癌症患者存活并存活更长时间,复发风险的人群增加。我们的算法将使新一代的研究的有效性,质量和结果的癌症护理,考虑到这一哨兵事件在癌症的轨迹。在应用研究中,我们将开始 利用这一机会,衡量这种情况对公共卫生和社会资源消耗的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael James Hassett其他文献

Michael James Hassett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael James Hassett', 18)}}的其他基金

SIMPRO Research Center: Integration and Implementation of PROs for Symptom Manage
SIMPRO 研究中心:症状管理 PRO 的集成和实施
  • 批准号:
    10898322
  • 财政年份:
    2018
  • 资助金额:
    $ 39.68万
  • 项目类别:
Cancer Recurrence: Detection in Administrative Data, Incidence, and Costs
癌症复发:管理数据、发病率和成本的检测
  • 批准号:
    8815117
  • 财政年份:
    2013
  • 资助金额:
    $ 39.68万
  • 项目类别:
Cancer Recurrence: Detection in Administrative Data, Incidence, and Costs
癌症复发:管理数据、发病率和成本的检测
  • 批准号:
    8628813
  • 财政年份:
    2013
  • 资助金额:
    $ 39.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了