Phenomics: Joint Clustering to Associate Changes in Allergy and Asthma Over Time
表型组学:联合聚类关联过敏和哮喘随时间的变化
基本信息
- 批准号:8733275
- 负责人:
- 金额:$ 9.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-17 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAgeAllergensAllergicAsthmaBayesian MethodBirthCharacteristicsChildClinicalCluster AnalysisCollaborationsCollectionComplexConfounding Factors (Epidemiology)DataData AnalysesData SetDependenceDetectionDevelopmentDiseaseDisease remissionEnvironmentEnvironmental Risk FactorEpidemiologyExtrinsic asthmaFactor AnalysisFamilyGene ExpressionGeneticGoalsGuidelinesHealthHypersensitivityIndividualJointsKnowledgeLeadLung diseasesMeasuresMethodsMethylationModelingNatural HistoryOne-Step dentin bonding systemPatternPattern FormationPhenotypePopulationPostdoctoral FellowPrevention strategyPrincipal Component AnalysisPrincipal InvestigatorProcessRecordsResearchResearch PersonnelSouth CarolinaStatistical MethodsStatistical ModelsSupport GroupsSymptomsSystemTherapeuticTimeUnited States National Institutes of HealthUniversitiesWheezingasthma preventionbaseclinical decision-makingclinical phenotypecohortcomorbidityexperiencegraduate studentimprovedinterestmethod developmentnovelphenomicspollutantpreventpublic health relevancetrend
项目摘要
DESCRIPTION (provided by investigator): Pattern analyses are central in applications seeking for general guidelines. Cluster analysis is one type of pattern analysis. This application aims to develop and apply novel model-based clustering methods to a longitudinal data set from a birth cohort established in 1989 to 1990 on the Isle of Wight (IOW), UK. The proposed methods aim to jointly cluster subjects and interdependent variables aiming to improved cluster homogeneity. The word "joint" refers to the ability of clustering subjects and clustering of variables along with the incorporation of dependence between the two clustering processes. At the meantime, we allow the existence of non-clustered subjects/variables. We will apply the methods to identify clusters of allergic sensitizations to different allergens (ASDA) and subjects belonging to each cluster of ASDA by searching for consistent temporal trend in subsets of ASDA. Through the inferred cluster profiles, we evaluate the association between two temporal patterns: asthma/wheeze status and allergic sensitizations over time with co-morbidities considered. Existing clustering methods (parametric or non-parametric) cannot achieve the goal stated above. These methods either cannot explain the contribution from external variables such as time (external variable) effect in allergic sensitizations (variables of interest), or overook the interdependence between different variables (e.g. allergic sensitizations to different allergens). Recent findings support dynamic allergic patterns. However, it is largely unknown (1) whether there exist a group (or groups) of allergens to which sensitizations share a similar temporal trend (natural history) such as periods of high or inert system responsive, and (2) whether dynamic allergic patterns are associated with asthma/wheeze persistence, remission, or new onset (phenomic association). This application attempts to fill these gaps, which will potentially lead us closer to the understanding of natural history of asthma, and provide strong potential to move forward the asthma prevention agenda. The birth cohort on the IOW in U.K. comprises 1,456 children examined at birth, age 1, 2, 4, 10, and 18 years with retention >90%. The cohort has extensive phenotype data at different ages and records of environmental factors such as allergen and pollutant levels. The main variables in our study include longitudinal allergic sensitization measures and asthma/wheeze status. The proposed methods are not limited to this data set, and can be applied to any data with continuous measures on a certain number of variables, e.g. high throughput gene expression data or methylation data. Our team has a long track record of successful collaboration with biostatistical (Zhang) and epidemiological (Karmaus) knowledge at the University of South Carolina, and clinical experts (Arshad and Roberts) at the University of Southampton and David Hide Asthma & Allergy Research Center on IOW. Dr. Zhang has rich experience in statistical modeling [1R03HL095429, Zhang (MPI)]. Several projects by this group are supported by NIH including 1R01AI091905 [Principal Investigator: Karmaus] and 1R01HL082925 [Principal Investigator: Arshad]; on both projects Dr. Zhang is a key investigator.
描述(由研究人员提供):模式分析是寻求一般指南的应用程序的中心。聚类分析是模式分析的一种。这项应用旨在开发和应用新的基于模型的聚类方法,以纵向数据集从1989年至1990年建立在英国鬼魂岛(IOW)出生队列。所提出的方法旨在联合对被试和相互依赖的变量进行聚类,以提高聚类的同质性。“联合”一词指的是对研究对象和变量进行分类的能力,以及两个分类过程之间的相关性。同时,我们允许非聚集的主题/变量的存在。我们将应用这些方法来识别对不同过敏原(Asda)的过敏性敏化簇,并通过在Asda子集中寻找一致的时间趋势来确定属于每个Asda簇的受试者。通过推断的簇分布,我们评估了两种时间模式之间的关联:哮喘/喘息状态和过敏性敏感化随着时间的推移,并考虑了共病。现有的聚类方法(参数或非参数)不能达到上述目的。这些方法要么不能解释时间(外部变量)等外部变量在过敏反应中的作用(感兴趣的变量),要么不能解释不同变量之间的相互依赖关系(例如对不同过敏原的过敏反应)。最近的发现支持动态过敏模式。然而,在很大程度上尚不清楚(1)是否存在一组(或多组)过敏原具有相似的时间趋势(自然病史),如高或惰性系统反应期,以及(2)动态过敏模式是否与哮喘/喘息持续、缓解或新发病(表型关联)相关。这项应用试图填补这些空白,这可能会使我们更接近哮喘的自然历史,并为推动哮喘预防议程提供强大的潜力。在英国,IOW的出生队列包括1,456名出生时接受检查的儿童,他们的年龄分别为1岁、2岁、4岁、10岁和18岁,保留率为90%。该队列有不同年龄的广泛的表型数据和环境因素的记录,如过敏原和污染物水平。我们研究的主要变量包括纵向过敏性致敏措施和哮喘/喘息状态。所提出的方法并不局限于这个数据集,可以应用于任何在一定数量的变量上具有连续测量的数据,例如高通量的基因表达数据或甲基化数据。我们的团队与南卡罗来纳大学的生物统计学(Zhang)和流行病学(Karmaus)知识,以及南安普顿大学(University Of Southampton)的临床专家(Arshad和Roberts)以及IOW上的David Hide哮喘和过敏研究中心有着长期的成功合作记录。张博士在统计建模方面有丰富的经验[1R03HL095429,张(MPI)]。该小组的几个项目得到了NIH的支持,包括1R01AI091905[首席研究员:Karmaus]和1R01HL082925[首席研究员:Arshad];在这两个项目中,张博士都是关键研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongmei Zhang其他文献
Hongmei Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongmei Zhang', 18)}}的其他基金
Clusters of Epigenetic Networks at Birth and Asthma Incidence in Children
出生时的表观遗传网络簇和儿童哮喘发病率
- 批准号:
10647235 - 财政年份:2023
- 资助金额:
$ 9.06万 - 项目类别:
Phenomics: Joint clustering to associate changes in allergy and asthma over time
表型组学:联合聚类将过敏和哮喘随时间的变化关联起来
- 批准号:
8445010 - 财政年份:2013
- 资助金额:
$ 9.06万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 9.06万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 9.06万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 9.06万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 9.06万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 9.06万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 9.06万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 9.06万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 9.06万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 9.06万 - 项目类别:














{{item.name}}会员




