Automatically Creating and Updating Meta-Studies of Randomized Controlled Trials

自动创建和更新随机对照试验的元研究

基本信息

  • 批准号:
    8977531
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): A "meta-study" (or "meta-analysis") collects and analyzes many studies on the same topic to understand if there is a meaningful, overall result. Meta-studies can support (or refute) interventions, spur new investigations, and lead to novel clinical guidelines. However, constructing meta-studies is a time intensive process of searching the literature, compiling the results, and performing the statistical analysis. Due to the time commitment that is required, many topics are unexplored, and many meta-studies are not kept up-to-date with the latest published results. Finally, a number of (unknown) biases, via subjective choices during the meta-study, may influence the results. Our long-term goal is to automate, as much as possible, the meta-study process. This should decrease subjective bias; increase the dissemination of evidence, especially for diseases and interventions that receive less attention; and allow for the automatic updating of meta-studies as new results are published. We propose a computer system that uses statistical machine learning to gather and group studies focused on similar interventions and outcomes; extract the necessary results from the text; and analyze the results using standard meta-analysis techniques. The final output will be presented in a spreadsheet-like Web-interface where users can explore and even change the data and meta-analyses. Our team uniquely blends technical expertise in machine learning with leadership in publishing meta-studies about Inflammatory Bowel Disease (IBD), our disease of focus for our Phase I feasibility study. We are therefore qualified technically and able to ensure that the techniques generate valid and accurate meta-studies. Our Phase I results will define the current state-of-the-art for this novel task. Further, although we will initially focus n IBD, our Phase I results will demonstrate that our approach can generalize to other diseases, eventually applying to any intervention and any disease. The feasibility shown by our Phase I results will motivate our Phase II effort where we will focus on dramatically improving the approach, yielding broad coverage of all medical literature and generating human-quality meta-studies. We note that by the end of Phase I we should have a viable end-to-end prototype, focused on IBD, which we can begin taking to market. The final product should significantly benefit our target markets given the Phase II emphasis to improve the technology, user experience, and scope of covered diseases.
 描述(由申请者提供):“元研究”(或“元分析”)收集并分析同一主题的许多研究,以了解是否有有意义的、全面的结果。元研究可以支持(或驳斥)干预措施,刺激新的研究,并导致新的临床指南。然而,构建元研究是一个搜索文献、汇编结果和进行统计分析的时间密集型过程。由于所需的时间投入,许多主题未被探索,并且许多元研究没有与最新发布的结果保持同步。最后,一些(未知的)偏见,通过元研究中的主观选择,可能会影响结果。我们的长期目标是尽可能地使元研究过程自动化。这将减少主观偏见;增加证据的传播,特别是对受到较少关注的疾病和干预措施;并允许随着新结果的发布自动更新元研究。我们提出了一个计算机系统,它使用统计机器学习来收集和分组专注于类似干预和结果的研究;从文本中提取必要的结果;并使用标准的荟萃分析技术分析结果。最终的输出将在一个类似电子表格的Web界面中呈现,用户可以在其中探索甚至更改数据和元分析。我们的团队独特地将机器学习方面的技术专业知识与发表关于炎症性肠病(IBD)的元研究的领导能力相结合,IBD是我们第一阶段可行性研究的重点疾病。因此,我们在技术上和能力上都是合格的 以确保这些技术产生有效和准确的元研究。我们的第一阶段结果将定义这项新任务的当前最先进水平。此外,尽管我们最初将重点放在IBD上,但我们的第一阶段结果将证明我们的方法可以推广到其他疾病,最终适用于任何干预措施和任何疾病。我们第一阶段结果显示的可行性将激励我们第二阶段的努力,我们将专注于显著改进方法,产生对所有医学文献的广泛覆盖,并产生人类质量的元研究。我们注意到,到第一阶段结束时,我们应该有一个可行的端到端原型,专注于IBD,我们可以开始将其推向市场。鉴于第二阶段的重点是改善覆盖疾病的技术、用户体验和范围,最终产品应该会使我们的目标市场显著受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Minton其他文献

Steven Minton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了