Early to late gadolinium enhancement cardiac MRI in ischemic and non-ischemic cardiomyopathies
缺血性和非缺血性心肌病的早期至晚期钆增强心脏 MRI
基本信息
- 批准号:8968688
- 负责人:
- 金额:$ 19.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsAmyloidosisAreaBreathingCardiacCardiomyopathiesCicatrixClassificationClinicalClinical ResearchContrast MediaContrast SensitivityCoronary ArteriosclerosisDataDefibrillatorsDevicesDiagnosisDilated CardiomyopathyDimensionsDoctor of PhilosophyEdemaEtiologyEvaluationFaceFibrosisFour-dimensionalGadoliniumGoalsGoldHeartHeart failureImageImage AnalysisImage EnhancementImplantInfarctionInjection of therapeutic agentInjuryKineticsLearningLinkLocationMagnetic Resonance ImagingMeasurementMeasuresMethodsMorbidity - disease rateMorphologic artifactsMotionMyocardialMyocardial InfarctionMyocardial IschemiaMyocarditisMyocardiumOutcomePathologyPatientsPatternPhasePhysiologic pulsePhysiologicalPreparationPrevalencePrimary idiopathic dilated cardiomyopathyProcessProtocols documentationResearchResolutionResourcesRespiratory DiaphragmRiskSarcoidosisScanningSecondary toSeveritiesSliceSpecificityTechniquesTimeTissuesVariantWorkaccurate diagnosisbasegadolinium oxideimage reconstructionimaging modalityimprovedinterdisciplinary collaborationmortalityneglectnon-invasive imagingnovelpatient populationpublic health relevancerespiratorytemporal measurementuptake
项目摘要
DESCRIPTION (provided by applicant): In patients with heart failure (HF), accurate differentiation among ischemic and various non-ischemic cardiomyopathies (NICMs) is essential for appropriate guidance of therapies. Late gadolinium enhancement (LGE) MRI is an ideal non-invasive imaging method for depicting myocardial scarring and fibrosis, but is not well suitable for HF patients due to the requirement of many breath-holds and limited specificity to distinguish various forms of NICM. While LGE MRI is based on static analysis of the concentration of contrast agent at a single post-injection time, contrast uptake and washout is actually a temporally dynamic process, the pattern of which varies depending on specific pathological conditions. If accurately captured, the contrast kinetics may improve the tissue characterization particularly for differentiating NICMs that are associated with different etiologies. The ultimate goal of this project is to develop so-called early-to-late gadolinium enhancement (ELGE) MRI methods which capture contrast uptake and wash-out over time and to utilize the resultant kinetics information for differentiating various NICMs. Towards this goal, we will first develop respiratory motion corrected 3D LGE imaging methods which enable whole heart coverage during free-breathing. This will be achieved by integrating novel MRI components such as 3D stack-of-spirals acquisition, outer volume suppression magnetization preparation and 1D projection-based motion estimator. Then, ELGE measurement will be done in NICM patients by repeating the free-breathing scan between 1min through 40 min post injection. After parameterization of ELGE time curves, classification rules will be established to distinguish myocarditis, dilated cardiomyopathy and sarcoidosis that justify a larger clinical study.
描述(由申请人提供):在心力衰竭(HF)患者中,准确区分缺血性和各种非缺血性心肌病(NICM)对于适当指导治疗至关重要。晚期钆增强(LGE)MRI是描述心肌瘢痕和纤维化的理想非侵入性成像方法,但由于需要多次屏气和区分各种形式NICM的特异性有限,因此不太适合HF患者。虽然LGE MRI基于在单个注射后时间对造影剂浓度的静态分析,但造影剂摄取和洗脱实际上是一个时间动态过程,其模式取决于特定的病理条件而变化。如果准确捕获,则对比动力学可以改善组织表征,特别是用于区分与不同病因相关联的NICM。该项目的最终目标是开发所谓的早期到晚期钆增强(ELGE)MRI方法,该方法可捕获造影剂摄取和随时间推移的洗脱,并利用所得动力学信息区分各种NICM。为了实现这一目标,我们将首先开发呼吸运动校正的3D LGE成像方法,该方法能够在自由呼吸期间覆盖整个心脏。这将通过集成新的MRI组件来实现,例如3D螺旋堆叠采集、外部体积抑制磁化准备和基于1D投影的运动估计器。然后,通过在注射后1分钟至40分钟之间重复自由呼吸扫描,在NICM患者中进行ELGE测量。ELGE时间曲线参数化后,将建立分类规则以区分心肌炎、扩张型心肌病和结节病,从而证明更大规模的临床研究是合理的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taehoon Shin其他文献
Taehoon Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taehoon Shin', 18)}}的其他基金
Non-contrast-enhanced peripheral MR angiography
非对比增强外周磁共振血管造影
- 批准号:
9330385 - 财政年份:2017
- 资助金额:
$ 19.19万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.19万 - 项目类别:
Continuing Grant