SUDEP Translational Research Alliance (SUTRA)Informatics & Data Analytics Core (IDAC): SUTRA-2 of 7
SUDEP 转化研究联盟 (SUTRA)信息学
基本信息
- 批准号:8820560
- 负责人:
- 金额:$ 74.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmericanAnimalsAwardBig DataBiochemical GeneticsBiologicalBlood PressureBrainBrain StemClinicalClinical ResearchCloud ComputingCollectionComputersConsultationsCouplingDataData AnalysesData CollectionData SetDatabasesDevelopmentElectrocardiogramElectroencephalographyEnrollmentEpilepsyEventFeedbackFormalinFreezingFundingGalvanic Skin ResponseGenerationsGoalsImageryInformaticsInstitutionInterventionModalityMotionNational Institute of Neurological Disorders and StrokeOnline SystemsOntologyOxygenPatientsPerformancePhenotypePreventionPrevention MeasuresProcessRegistriesResearchResearch DesignResearch InfrastructureResearch PersonnelResourcesRespirationRestRiskRoleSeizuresServicesSignal TransductionStructureSurveysSystemSystems BiologySystems IntegrationTechnologyTerminologyTranslational ResearchTranslationsVisualWorkbasebiomedical scientistcohortcomputerized toolscrosslinkdata managementdata miningdemographicsdesignempoweredevidence basegenetic resourceimprovedmembermortalityneuropathologyopen sourcepublic health relevancequality assurancerespiratorysatisfactionsignal processingsleep epilepsytooluser-friendly
项目摘要
DESCRIPTION (provided by applicant): Project Summary The goal of SUTRA (SUDEP Translational Research Alliance) Center Without Walls is to better understand the brainstem mechanisms responsible for SUDEP and elucidate the role of cortical influences thereon using a data-driven, systems-biology-based approach. This understanding requires a strategy that shares research resources and infrastructure to make good and efficient use of a spectrum of prospectively collected data encompassing clinical, electrophysiological, biochemical, genetic, and neuropathological domains. A critical aspect of SUTRA is the process and infrastructure facilitating the sharing of clinical and research data across centers. In our NINDS-funded center- planning award, Prevention and Risk Identification of SUDEP Mortality (PRISM; 1P20- NS076965), a team of world-class epileptologists, computer scientists, biomedical informaticians and data analytics experts has developed an informatics infrastructure for sharing research data, using the Multi-Modality Epilepsy Data Capture and Integration System (MEDCIS). The main goal of this Informatics and Data Analytics U01 Core (IDAC) is to build on the paradigm-changing progress already achieved through PRISM's MEDICS infrastructure and expand and broaden the sharing and utilization of research resources among SUTRA partners. With access to biospecimen materials and alliances with stakeholder organizations including Dup15q, the North American SUDEP Registry, Courtagen, GW Pharma, and CURE, SUTRA will continuously boost materials and data collection. IDAC will promote and facilitate SUDEP research by expanding an integrated clinical and translation data resource for epilepsy; providing coordinated services and support for SUTRA members; empowering investigator with web-based cohort search interface for data mining and hypothesis generation; data analytics and statistical support for in-depth analyses of multi-modal data collected in the shared and expanding SUTRA Data Repository.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guo-Qiang ZHANG其他文献
Guo-Qiang ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guo-Qiang ZHANG', 18)}}的其他基金
SCH: Neurophysiological AI-Ready Data Resource
SCH:神经生理学 AI 就绪数据资源
- 批准号:
10435818 - 财政年份:2022
- 资助金额:
$ 74.43万 - 项目类别:
SCH: Neurophysiological AI-Ready Data Resource
SCH:神经生理学 AI 就绪数据资源
- 批准号:
10586152 - 财政年份:2022
- 资助金额:
$ 74.43万 - 项目类别:
The Center for SUDEP Research (CSR), Informatics and Data Analytics Core (IDAC)
SUDEP 研究中心 (CSR)、信息学和数据分析核心 (IDAC)
- 批准号:
9233336 - 财政年份:2016
- 资助金额:
$ 74.43万 - 项目类别:
The Center for SUDEP Research (CSR), Informatics and Data Analytics Core (IDAC)
SUDEP 研究中心 (CSR)、信息学和数据分析核心 (IDAC)
- 批准号:
9330248 - 财政年份:2016
- 资助金额:
$ 74.43万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Continuing Grant














{{item.name}}会员




