Closed-Loop Glucagon Pump for Treatment of Post-Bariatric Hypoglycemia

用于治疗减肥后低血糖的闭环胰高血糖素泵

基本信息

  • 批准号:
    8980271
  • 负责人:
  • 金额:
    $ 56.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The objective of this Fast-Track program is to develop a novel, stable non-aqueous glucagon formulation with an infusion pump system in closed-loop with continuous glucose monitoring, for treatment of post-bariatric surgery patients who have experienced repetitive severe postprandial hypoglycemia. This approach will provide: (a) automated or semi-automated glucagon; (b) personalized dosing that will not trigger hyperglycemia; and (c) provide a more economical treatment strategy. In this patient population, eating to correct hypoglycemia can actually trigger another subsequent hypoglycemic event, whereas glucagon acts to increase blood glucose levels without triggering excess insulin secretion. Thus there is an urgent need for improved approaches for the treatment of severe hypoglycemia to maintain health, allow optimal nutrition, and improve safety in patients with post-bariatric hypoglycemia (PBH) syndrome. The primary objective of the current proposal is directly relevant to the NIDDK research priorities for obesity treatment and prevention, as well as type 2 diabetes treatment. The Phase I effort of this project will develop algorithms using CGM information to trigger real-time alerts in the presence of hypoglycemia using an automated trigger algorithm that will deploy and deliver a dose of soluble glucagon from a pump, and test this proof-of-concept (POC) in a clinical setting. The Phase II effort of this program will take th optimized algorithm from Phase I into a closed-loop pump system for use in a randomized, blinded, placebo-controlled clinical trial. The data generated in the project may also enable future outpatient studies in which patients can test the system in "real-life" situations. We propose that the resulting closed-loop glucagon (CLG) system with Xeris' glucagon in an OmniPod(r) will be a more effective treatment for PBH syndrome.
 描述(由申请人提供):该快速通道计划的目的是开发一种新型、稳定的非水性胰高血糖素制剂,具有闭环输液泵系统和持续血糖监测,用于治疗经历过反复严重餐后低血糖的减肥手术后患者。这一办法将提供:(a)自动或半自动胰高血糖素;(B)不会引发高血糖症的个性化给药;和(c)提供更经济的治疗策略。在该患者人群中,进食纠正低血糖实际上可触发另一个后续低血糖事件,而胰高血糖素可增加血糖水平而不触发过量胰岛素分泌。因此,迫切需要改善治疗严重低血糖的方法,以维持健康,允许最佳营养,并提高肥胖后低血糖(PBH)综合征患者的安全性。目前提案的主要目标与NIDDK肥胖治疗和预防以及2型糖尿病治疗的研究重点直接相关。本项目的I期工作将使用CGM信息开发算法,以使用自动触发算法在存在低血糖时触发实时警报,该自动触发算法将从泵中部署和输送一定剂量的可溶性胰高血糖素,并在临床环境中测试该概念验证(POC)。该项目的第二阶段工作将把第一阶段的优化算法应用到闭环泵系统中,用于随机、设盲、安慰剂对照的临床试验。该项目中生成的数据还可能支持未来的门诊研究,其中患者可以在“现实生活”情况下测试该系统。我们建议,在OmniPod(r)中使用Xeris胰高血糖素的闭环胰高血糖素(CLG)系统将是PBH综合征的更有效治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eyal Dassau其他文献

Eyal Dassau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eyal Dassau', 18)}}的其他基金

Automated Glucose Regulation to improve Diabetes Control and Outcomes for Pregnant Women with Type 1 Diabetes and Fetus
自动血糖调节可改善 1 型糖尿病孕妇和胎儿的糖尿病控制和结局
  • 批准号:
    9789263
  • 财政年份:
    2018
  • 资助金额:
    $ 56.15万
  • 项目类别:
On-body ecosystem for automated insulin delivery in type 1 diabetes
用于 1 型糖尿病自动胰岛素输送的体内生态系统
  • 批准号:
    9306439
  • 财政年份:
    2017
  • 资助金额:
    $ 56.15万
  • 项目类别:
Closed-Loop Glucagon Pump for Treatment of Post-Bariatric Hypoglycemia
用于治疗减肥后低血糖的闭环胰高血糖素泵
  • 批准号:
    9100962
  • 财政年份:
    2015
  • 资助金额:
    $ 56.15万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了