Phospholipid Metabolism in Cell Membrane

细胞膜中的磷脂代谢

基本信息

  • 批准号:
    8838823
  • 负责人:
  • 金额:
    $ 28.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Phospholipid metabolism is fundamental in cells. It not only generates basic biological membranes, but also plays important roles in cellular signaling processes in nearly all tissues. In addition, many proteins, both globular and membrane bound, require specific phospholipids to fulfill their functions. Cells maintain a complicated and regulated metabolic network to synthesize a great diversity of phospholipids and degrade them in a time fashion to meet cellular requirements. Many steps of phospholipid metabolism take place on the cell membrane and are catalyzed by membrane-embedded enzymes. Their molecular mechanisms are poorly understood largely due to the paucity of structural information. In particular, how these enzymes select their substrates from the lipid membrane bilayer and carry out catalysis in a hydrophobic membrane environment is a central question still unanswered for general phospholipid metabolic mechanisms. To understand this important question, we study lipid phosphate phosphatases (LPPs) as model. LPPs, members of an intramembrane phosphatase protein family, play important roles in phospholipid synthesis and homeostasis. LPPs also catalyze dephosphorylation of several important phospholipid hormonal messengers regulating numerous phospholipids-mediated signaling processes. Based on our recent apo form crystal structure of the PgpB protein, an LPP homolog from E.coli, we proposed a novel hypothesis for the intramembrane dephosphorylation mechanism of PgpB, in which a) phospholipid substrates access an conserved intramembrane tunnel from the membrane bilayer to reach the catalytic site and b) a large conformational change of TM3 is essential for substrate binding and catalysis. To test this important hypothesis, in this project w will focus on two key aspects using a combination of biochemical, biophysical and X-ray structural approaches. 1) To demonstrate the substrate binding conformation and substrate-induced protein conformational changes, we will determine PgpB complex structures bound with a metabolism-stabilized phospholipid substrate analog or vanadate, a phosphate product analog, to gain structural details of a catalytic cycle. 2) To functionally characterize the intramembrane substrate access tunnel, we have designed several mutagenesis and crosslinking strategies to elucidate how the substrate passes through the intramembrane tunnel to reach the catalytic site. We will also explore the product release pathway using similar approaches to understand how the dephosphorylated product is delivered to the membrane bilayer after catalysis. 3) To further demonstrate the protein conformational changes, we will apply EPR and fluorescence stopped-flow approaches to catch the protein motions in response to the substrate analog binding in atomic detail in detergent solutions or in different lipid-defind nanodiscs. These structural and functional studies will not only confirm our hypothesis and reveal the catalytic mechanism of intramembrane phospholipid dephosphorylation, but also establish a structural basis to understand phospholipid metabolism in the cell membrane in general.
描述(申请人提供):磷脂代谢是细胞的基础。它不仅产生基本的生物膜,而且在几乎所有组织的细胞信号过程中都扮演着重要的角色。此外,许多蛋白质,无论是球状的还是膜结合的,都需要特定的磷脂来完成它们的功能。细胞维持着一个复杂和受调控的代谢网络,以合成各种磷脂,并以一种时间的方式将其降解,以满足细胞的需求。磷脂代谢的许多步骤都发生在细胞膜上,并由膜包埋的酶催化。其分子机制在很大程度上是由于缺乏结构信息而知之甚少。特别是,这些酶如何从脂膜双层中选择底物并在疏水性膜环境中进行催化,是一般磷脂代谢机制仍未回答的中心问题。为了理解这个重要的问题,我们研究了脂磷酸盐磷酸酶(LPP)作为模型。LPPS是膜内磷酸酶家族的成员,在磷脂合成和动态平衡中发挥重要作用。LPPS还催化几个重要的磷脂激素信使的去磷酸化,调节许多磷脂介导的信号过程。根据我们最近对PgpB蛋白的apo形式的晶体结构,我们对PgpB的膜内去磷酸化机制提出了一个新的假说,其中a)磷脂底物从膜双层进入保守的膜内隧道到达催化位置,b)TM3的大构象变化是底物结合和催化所必需的。为了验证这一重要的假设,在这个项目中,w将结合使用生化、生物物理和X射线结构方法,重点关注两个关键方面。1)为了证明底物结合构象和底物诱导的蛋白质构象变化,我们将确定与代谢稳定的磷脂底物类似物或磷酸产物类似物钒酸结合的PgpB复杂结构,以获得催化循环的结构细节。2)为了确定膜内底物通道的功能,我们设计了几种诱变和交联策略来阐明底物如何通过膜内通道到达催化位置。我们还将使用类似的方法探索产物释放途径,以了解催化后去磷酸化产物是如何输送到膜双层的。3)为了进一步证明蛋白质构象的变化,我们将应用EPR和荧光停流方法来捕捉洗涤剂溶液或不同脱脂纳米盘中底物类似物原子细节结合时蛋白质的运动。这些结构和功能的研究不仅证实了我们的假说,揭示了膜内磷脂去磷酸化的催化机制,而且为从总体上理解细胞膜中的磷脂代谢奠定了结构基础。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria.
革兰氏阴性菌中溶血磷脂的生物发生、运输和重塑。
Measurement of Lysophospholipid Transport Across the Membrane Using Escherichia coli Spheroplasts.
使用大肠杆菌原生质球测量溶血磷脂跨膜运输。
Substrate Selectivity of Lysophospholipid Transporter LplT Involved in Membrane Phospholipid Remodeling in Escherichia coli.
参与大肠杆菌膜磷脂重塑的溶血磷脂转运蛋白 LplT 的底物选择性。
  • DOI:
    10.1074/jbc.m115.700419
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin,Yibin;Bogdanov,Mikhail;Tong,Shuilong;Guan,Ziqiang;Zheng,Lei
  • 通讯作者:
    Zheng,Lei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Zheng其他文献

Lei Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Zheng', 18)}}的其他基金

Integration of stromal targeting agents with immune checkpoint therapy
基质靶向剂与免疫检查点疗法的整合
  • 批准号:
    10408084
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
  • 批准号:
    10280369
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
  • 批准号:
    10652472
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
  • 批准号:
    10457395
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
Integration of stromal targeting agents with immune checkpoint therapy
基质靶向剂与免疫检查点疗法的整合
  • 批准号:
    10661808
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
  • 批准号:
    10796719
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
Annexin A2 as a mediator of pancreatic cancer metastases
膜联蛋白 A2 作为胰腺癌转移的介质
  • 批准号:
    8579467
  • 财政年份:
    2013
  • 资助金额:
    $ 28.88万
  • 项目类别:
Annexin A2 as a mediator of pancreatic cancer metastases
膜联蛋白 A2 作为胰腺癌转移的介质
  • 批准号:
    8712421
  • 财政年份:
    2013
  • 资助金额:
    $ 28.88万
  • 项目类别:
Interrogate the interaction between tumor cells and nerves in the tumor microenvironment of pancreatic cancer
探究胰腺癌肿瘤微环境中肿瘤细胞与神经之间的相互作用
  • 批准号:
    9764752
  • 财政年份:
    2013
  • 资助金额:
    $ 28.88万
  • 项目类别:
Interrogate the interaction between tumor cells and nerves in the tumor microenvironment of pancreatic cancer
探究胰腺癌肿瘤微环境中肿瘤细胞与神经之间的相互作用
  • 批准号:
    10578764
  • 财政年份:
    2013
  • 资助金额:
    $ 28.88万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
  • 批准号:
    22KJ2600
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了