A Mechanistic Model of Chimeric Antigen Receptor (CAR) Signaling Predicts the Effects of Co-Stimulatory Signaling on T cell Activation
嵌合抗原受体 (CAR) 信号传导机制模型可预测共刺激信号传导对 T 细胞激活的影响
基本信息
- 批准号:8983416
- 负责人:
- 金额:$ 4.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAntibodiesAntigen ReceptorsAreaB-Cell LymphomasBindingBinding ProteinsCD28 geneCancer PatientCell SurvivalCell TherapyCell physiologyCellsCessation of lifeClinicClinical TrialsComplexComputer SimulationDataDifferential EquationEngineeringExtracellular DomainFlow CytometryGenerationsGoalsHealthImmuneImmune responseImmune systemImmunotherapyIn VitroIndividualLeadLiteratureMalignant NeoplasmsMediatingModelingModificationOutcomeOutputPathway interactionsPatientsPopulationProductionPropertyProtein BindingProtein EngineeringProteinsResearchSafetySignal PathwaySignal TransductionSon of Sevenless ProteinsSystems BiologyT cell responseT-Cell ActivationT-Cell ReceptorT-LymphocyteTestingTrainingTumor Antigensanticancer researchcancer cellcancer immunotherapycancer therapycellular engineeringchimeric antigen receptorcytokinedesignexhaustionexperienceimprovedinsightpatient populationpredictive modelingprematureprotein activationresearch studyresponsetooltumor
项目摘要
DESCRIPTION (provided by applicant): Adoptive cell therapy (ACT) is an exciting area of cancer immunotherapy research in which a patient's own immune cells are removed from their body, modified in vitro, and re-injected to attack the cancer. The most successful form of modification is to engineer T cells from the patient with chimeric antigen receptor (CAR) proteins, which trigger an immune response upon recognition of a cancer cell. To activate the T cells, CARs are composed of (1) an extracellular domain, derived from an antibody, that can bind to a tumor associated antigen and (2) several intracellular signaling domains, derived from endogenous T cell receptors that can activate an immune response. Currently three generations of CARs have been developed, each increasing the number of intracellular co-stimulatory domains present on the CAR. CARs containing the CD3ζ signaling domain in combination with either CD28 or 41BB co-stimulatory domains have shown some promise in clinical trials of B cell lymphoma; however, some patients do not respond to therapy, while others experience over activation of the immune system, which can be deadly. It is not clear how further increasing the number of co-stimulatory domains will affect T cell activation or if the increase will be able to improve the control over CAR therapy. Therefore, a deeper understanding of the cell signaling pathways that lead to CAR T cell activation is needed to describe how signaling domain pathways integrate to affect the various fucntions of T cell activation. Systems biology, specifically computational mechanistic modeling, provides a unique platform to understand and optimize the activation of CAR engineered T cells. This proposal aims to explore the effects of different CAR signaling domains, individually and in combination, by developing a set of mechanistic computational models that can predict T cell activation mediated by different CARs. The models will describe the mechanisms by which activation of individual signaling domains, which have not been previously modeled, affect downstream proteins that correlate to specific properties of T cell activation, such as cytokine production, T cell survival, and cell proliferatin. The models will be comprised of ordinary differential equations derived from known interactions in the literature. They will be trained on flow cytometry data of protein binding and activation such that the models are able to predict the effects of CAR stimulation. We will perform in silico experiments to predict how signaling of individual CAR co-stimulatory domains is integrated to affect particular aspects of the T cell response. For example, we can optimize CAR therapy for patients that do not respond to treatment by using the model to determine the optimal signaling domain combination to increase proteins that correlate to cytokine production without affecting those that correlate to survival. These hypotheses will then be validated by in vitro experiments. Thus, the proposed research will provide valuable information to improve the safety and efficacy of CAR engineered T cells, enabling the benefits of this therapy to be expanded to a wider patient population.
描述(由申请人提供):免疫细胞疗法(ACT)是癌症免疫疗法研究的一个令人兴奋的领域,其中患者自身的免疫细胞从其体内取出,在体外进行修饰,并重新注射以攻击癌症。最成功的修饰形式是用嵌合抗原受体(CAR)蛋白改造患者的T细胞,这种蛋白在识别癌细胞时触发免疫反应。为了激活T细胞,汽车由(1)来源于抗体的胞外结构域和(2)来源于内源性T细胞受体的几个胞内信号传导结构域组成,所述胞外结构域可以结合肿瘤相关抗原,所述内源性T细胞受体可以激活免疫应答。目前已经开发了三代汽车,每一代都增加了CAR上存在的细胞内共刺激结构域的数量。含有CD 3 β信号传导结构域与CD 28或41 BB共刺激结构域组合的汽车在B细胞淋巴瘤的临床试验中显示出一些前景;然而,一些患者对治疗没有反应,而另一些患者经历免疫系统的过度激活,这可能是致命的。目前尚不清楚进一步增加共刺激结构域的数量将如何影响T细胞活化,或者这种增加是否能够改善对CAR治疗的控制。因此,需要更深入地了解导致CAR T细胞活化的细胞信号传导途径,以描述信号传导结构域途径如何整合以影响T细胞活化的各种功能。系统生物学,特别是计算机制建模,提供了一个独特的平台来理解和优化CAR工程化T细胞的激活。该提案旨在通过开发一组可以预测由不同汽车介导的T细胞活化的机械计算模型来探索不同CAR信号传导结构域单独和组合的影响。这些模型将描述单个信号传导结构域的激活(以前没有建模)影响下游蛋白质的机制,这些蛋白质与T细胞激活的特定特性相关,如细胞因子产生、T细胞存活和细胞增殖。该模型将包括从文献中已知的相互作用推导出的常微分方程。他们将接受蛋白质结合和激活的流式细胞术数据的培训,以便模型能够预测CAR刺激的影响。我们将进行计算机模拟实验,以预测单个CAR共刺激结构域的信号传导如何整合以影响T细胞应答的特定方面。例如,我们可以通过使用该模型来确定最佳信号传导结构域组合,以增加与细胞因子产生相关的蛋白质,而不影响与生存相关的蛋白质,从而优化对治疗无反应的患者的CAR治疗。这些假设将通过体外实验进行验证。因此,拟议的研究将提供有价值的信息,以提高CAR工程化T细胞的安全性和有效性,使这种疗法的益处能够扩展到更广泛的患者群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Ann Rohrs其他文献
Jennifer Ann Rohrs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 4.31万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 4.31万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 4.31万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 4.31万 - 项目类别:
Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别:
Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
- 批准号:
10699504 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
- 批准号:
10782567 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别: