Dynamic 3D interplay of primary human salivary cells and the basement membrane
人类原代唾液细胞和基底膜的动态 3D 相互作用
基本信息
- 批准号:8874752
- 负责人:
- 金额:$ 5.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acinar CellAcinus organ componentAddressBasement membraneBiologicalBiological ModelsBiomechanicsCell SurvivalCell physiologyCellsCollaborationsComputer SimulationConnexinsCuesDepositionDevelopmentDiagnosisEncapsulatedEngineeringEvaluationExcisionExertionExtracellular MatrixFeedbackFluorescence MicroscopyFrequenciesFutureGelGlandGoalsGrantGrowthHead and Neck CancerHealthHumanHyaluronic AcidHydrogelsImageIn VitroIntegrinsInterventionLeadLifeMaintenanceManuscriptsMapsMasticationMeasuresMechanicsMediatingMentorshipModelingMolecularMovementNatural regenerationNeurotransmittersNuclearOral healthParotid GlandPatientsPositioning AttributeProcessProteinsQuality of lifeRadiation therapyRattusResearchResearch PersonnelResectedResolutionRiskRoleRotationSalivarySalivary Gland TissueSalivary GlandsSerousShapesSignal TransductionSignaling MoleculeStagingStandardizationStructureSurgical ReplantationSymptomsSystemTissue EngineeringTissuesTractionTrainingTranslationsWritingXerostomiabasecancer therapycareercell assemblycell motilitycell typedriving forceextracellularfluorescence imaginghead and neck cancer patientin vitro Modelin vivoirradiationlight microscopyloss of functionmigrationmultidisciplinarynovelpolarized cellresponsesalivary cellscaffoldskillstime usetumor
项目摘要
DESCRIPTION (provided by applicant): Head and neck cancer treatments that require the resection of glandular tissue in combination with irradiation therapy cause significant damage to target and surrounding tissues. Salivary glands are vulnerable and when compromised, a loss of function causes hyposalivation and 'dry mouth' (xerostomia) that lead to an increase in oral health risk and a decline in quality of life. Currently, there is no cure for xerostomia, only interventions for alleviating the discomfort associated with loss of salivary function. A novel therapy is underway to address this unmet need using hyaluronic acid (HA) hydrogels and primary cells from resected human salivary gland. Repeatable organization of salivary acini into functional secretory units is a key step toward the standardization of our model system. Our goal is to mimic the microenvironment of parotid salivary gland tissue in development to best support the organization of serous acini. Determining factors for organized acini are basement membrane (BM) deposition and lumen formation. Using live imaging light and fluorescence microscopy, we have observed the coordinated motility of acinar cells in HA hydrogels, prior to acini organization. In early stage organization, acinar cells are in a dynamic microenvironment continuously influenced by mechanical forces, and we hypothesize that mechanical forces drive the BM deposition, lumen formation, and structural integrity of the acini in 3D. In Aim 1, we intend to identify the signaling mechanisms involved in the net coordination of cell motility durin BM deposition and growth of the acini. Signaling mechanisms proposed in this coordination include integrin signaling at the cell-ECM interface, connexin mediated intra- and intercellular signaling, and nesprin4 nuclear repositioning. In Aim 2, we will measure the traction forces required to initiate the coordinated movement of a multicellular structure in 3D. Live-fluorescence imaging and computational modeling will be used to develop displacement field and cellular traction maps, and reconstruct cellular traction forces of organizing acini as a function of their size and microenvironment. In Aim 3, we will evaluate acini organization, lumen formation, and structural integrity in response to mechanical loading of the hydrogel. Effects of varying magnitude and frequency loads on acini organization and integrity will be evaluated. Successful completion of these specific aims will (1) standardize the model system used to engineer serous acini of the salivary parotid gland as well as the evaluation process for optimizing iterations of the HA hydrogel herein, (2) yield fundamental understanding of salivary acini structure/function relations, and (3) advance the translational potential of this tissue engineered system. Additionally, the PI, Dr. Danielle Wu, will gain experimental and computational training in 3D, crucial for her future as an independent researcher in tissue engineering, will acquire skills and perspective from operating at a multidisciplinary interface, and will advance her long-term career goals with training in manuscript and grant writing, mentorship, and collaboration skills.
描述(由申请人提供):头颈部癌症治疗需要切除腺体组织并结合放射治疗,会对靶组织和周围组织造成显著损伤。唾液腺是脆弱的,当受到损害时,功能丧失会导致唾液分泌不足和“口干”(口干),导致口腔健康风险增加和生活质量下降。目前,没有治愈口干症的方法,只有减轻与唾液功能丧失相关的不适的干预措施。一种新的疗法正在进行中,以解决这一未满足的需求,使用透明质酸(HA)水凝胶和原代细胞从切除的人唾液腺。唾液腺泡可重复组织成功能性分泌单位是我们模型系统标准化的关键一步。我们的目标是模拟腮腺组织发育的微环境,以最好地支持浆液性腺泡的组织。腺泡组织化的决定因素是基底膜(BM)沉积和管腔形成。使用实时成像光和荧光显微镜,我们已经观察到的协调运动的腺泡细胞在HA水凝胶,腺泡组织之前。在早期组织中,腺泡细胞处于动态的微环境中,不断受到机械力的影响,我们假设机械力驱动BM沉积、管腔形成和3D中腺泡的结构完整性。在目的1中,我们打算确定参与BM沉积和腺泡生长过程中细胞运动的净协调的信号机制。在这种协调中提出的信号传导机制包括细胞-ECM界面处的整合素信号传导、连接蛋白介导的细胞内和细胞间信号传导以及nesprin 4核重新定位。在目标2中,我们将测量在3D中启动多细胞结构的协调运动所需的牵引力。活体荧光成像和计算建模将用于开发位移场和细胞牵引图,并重建组织腺泡的细胞牵引力作为其大小和微环境的函数。在目标3中,我们将评价腺泡组织、管腔形成和结构完整性对水凝胶机械负载的响应。将评估不同幅度和频率载荷对腺泡组织和完整性的影响。这些特定目标的成功完成将(1)标准化用于工程化唾液腮腺的浆液腺泡的模型系统以及用于优化本文HA水凝胶的迭代的评估过程,(2)产生对唾液腺泡结构/功能关系的基本理解,和(3)推进该组织工程化系统的转化潜力。此外,PI Danielle Wu博士将获得3D实验和计算培训,这对她未来作为组织工程独立研究人员至关重要,将获得在多学科界面操作的技能和观点,并将通过手稿和赠款写作,指导和协作技能的培训来推进她的长期职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle Wu其他文献
Danielle Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle Wu', 18)}}的其他基金
Dynamic 3D interplay of primary human salivary cells and the basement membrane
人类原代唾液细胞和基底膜的动态 3D 相互作用
- 批准号:
8783875 - 财政年份:2014
- 资助金额:
$ 5.68万 - 项目类别:
Dynamic 3D interplay of primary human salivary cells and the basement membrane
人类原代唾液细胞和基底膜的动态 3D 相互作用
- 批准号:
9047268 - 财政年份:2014
- 资助金额:
$ 5.68万 - 项目类别: