Decision Making and Clinical Work of Test Result Follow-up in Health IT Settings

健康IT环境中检测结果跟踪的决策和临床工作

基本信息

  • 批准号:
    8892082
  • 负责人:
  • 金额:
    $ 49.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Background: Failure to follow up abnormal test results is a significant safety concern in outpatient settings and often leads to patient harm and malpractice claims. Electronic health records (EHRs) can help ensure reliable delivery of abnormal test results, but they do not guarantee that this results in appropriate follow-up action. Our work in the Veterans Health Administration (VA) reveals that almost 8% of abnormal outpatient test results transmitted as EHR-based alerts lacked follow-up at 4 weeks. We subsequently found that follow-up of abnormal tests is influenced by multitude of technological factors (software/hardware) and non-technological factors (user behaviors, workflow, information load, policies and procedures, training and other organizational factors). Improving test result follow-up will require a better understanding of how follow-up processes fit within the complex "socio-technical" context of EHR-enabled health care. It is especially important to clarify how these contextual features influence the cognitive processes that are necessary to perceive, comprehend, and act on abnormal findings in a timely manner. Given that laboratory test result reporting is a component of Stage 2 meaningful use, further exploration of vulnerabilities in EHR-based test result follow-up is imperative. Objectives/Methods: We propose to apply human factors-based frameworks to understand system and cognitive vulnerabilities that affect EHR-based outpatient test result follow-up. To better define the contex of clinical work that affects decision-making in this area, we will use a conceptual model that posits a set of eight socio-technical dimensions that must be considered in the real-world use of IT. Building on our prior work in the VA, our study settings include clinics affiliated with 3 non-A institutions in order to improve generalizability. In Aim 1, we will identify the cognitive factorsthat affect test result follow-up processes in EHR-based health systems. We will conduct record reviews to identify recent abnormal test results with and without timely follow- up and conduct cognitive task analysis interviews with providers who ordered the tests. We will also assess the cognitive load of EHR-based alerts related to test results. In Aim 2, we will characterize the nature of clinical work required for individuals and teams to respond appropriately to abnormal test results in EHR-enabled outpatient settings. To map these processes at each site, we will collect qualitative data using rapid assessment techniques (structured observations, brief surveys, and key informant interviews). Our interpretation of these data will include consideration of how different socio-technical factors (e.g. EHR design, workflow, and organizational factors) interact and affect the cognitive work of test result follow-up. In Aim 3, e will conduct prospective risk assessments to characterize the particular work processes and features of the socio-technical context that are most vulnerable to failure within and across our study sites. This foundational work will lead to better understanding of the "basic science" of missed test results and will clarify targets for future interventions to improve follow-up of abnormal test results in EHR-enabled outpatient settings.
描述(由申请人提供):背景:未能跟进异常的测试结果是一个重要的安全问题,在门诊设置,往往导致患者伤害和医疗事故索赔。电子健康记录(EHR)可以帮助确保异常检测结果的可靠交付,但它们不能保证这会导致适当的后续行动。 我们在退伍军人健康管理局(VA)的工作表明,近8%的异常门诊测试结果作为基于EHR的警报传输,在4周内缺乏随访。我们随后发现,异常测试的后续工作受到众多技术因素(软件/硬件)和非技术因素(用户行为,工作流程,信息负载,政策和程序,培训和其他组织因素)的影响。改进测试结果后续工作将需要更好地理解后续工作流程如何与 EHR支持的医疗保健的复杂“社会技术”背景。特别重要的是要澄清这些背景特征如何影响认知过程,这些认知过程是及时感知,理解和对异常结果采取行动所必需的。鉴于实验室检测结果报告是第二阶段有意义使用的一个组成部分,进一步探索基于EHR的检测结果后续工作中的漏洞势在必行。目的/方法:我们建议应用人为因素为基础的框架,以了解系统和认知的漏洞,影响电子健康档案为基础的门诊测试结果的后续行动。为了更好地定义影响这一领域决策的临床工作的背景,我们将使用一个概念模型,该模型假定了一组在现实世界中使用IT时必须考虑的8个社会技术维度。基于我们在VA的先前工作,我们的研究设置包括与3个非A机构附属的诊所,以提高普遍性。在目标1中,我们将确定在基于EHR的卫生系统中影响测试结果后续过程的认知因素。我们将进行记录审查,以确定最近的异常测试结果,有和没有及时跟进,并进行认知任务分析采访的供应商谁订购的测试。我们还将评估与测试结果相关的基于EHR的警报的认知负荷。在目标2中,我们将描述个人和团队在启用EHR的门诊环境中对异常检测结果做出适当反应所需的临床工作的性质。为了在每个站点绘制这些过程,我们将使用快速评估技术(结构化观察,简短调查和关键线人访谈)收集定性数据。我们对这些数据的解释将包括考虑不同的社会技术因素(例如EHR设计,工作流程和组织因素)如何相互作用并影响测试结果随访的认知工作。在目标3中,我们将进行前瞻性风险评估,以描述我们研究中心内部和研究中心之间最容易发生故障的特定工作流程和社会技术背景特征。这项基础性工作将使人们更好地了解漏测结果的“基础科学”,并将澄清未来干预措施的目标,以改善电子健康记录门诊环境中异常检测结果的后续工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HARDEEP SINGH其他文献

HARDEEP SINGH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HARDEEP SINGH', 18)}}的其他基金

Diagnostic Safety Center for Advancing E-triggers and Rapid Feedback Implementation (DISCOVERI)
推进电子触发和快速反馈实施的诊断安全中心 (DISCOVERI)
  • 批准号:
    10641526
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
Diagnostic Safety Center for Advancing E-triggers and Rapid Feedback Implementation (DISCOVERI)
推进电子触发和快速反馈实施的诊断安全中心 (DISCOVERI)
  • 批准号:
    10708961
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
Application of a Machine Learning to Enhance e-Triggers to Detect and Learn from Diagnostic Safety Events
应用机器学习增强电子触发器以检测诊断安全事件并从中学习
  • 批准号:
    10018015
  • 财政年份:
    2019
  • 资助金额:
    $ 49.91万
  • 项目类别:
Application of a Machine Learning to Enhance e-Triggers to Detect and Learn from Diagnostic Safety Events
应用机器学习增强电子触发器以检测诊断安全事件并从中学习
  • 批准号:
    10254269
  • 财政年份:
    2019
  • 资助金额:
    $ 49.91万
  • 项目类别:
Measuring and Improving the Safety of Test Result Follow-Up
测量和提高测试结果跟踪的安全性
  • 批准号:
    10284937
  • 财政年份:
    2018
  • 资助金额:
    $ 49.91万
  • 项目类别:
Measuring and Improving the Safety of Test Result Follow-Up
测量和提高测试结果跟踪的安全性
  • 批准号:
    10216346
  • 财政年份:
    2018
  • 资助金额:
    $ 49.91万
  • 项目类别:
Improving Direct Notification of Abnormal Test Results via Patient Portals
改进通过患者门户网站对异常测试结果的直接通知
  • 批准号:
    8804449
  • 财政年份:
    2014
  • 资助金额:
    $ 49.91万
  • 项目类别:
Decision Making and Clinical Work of Test Result Follow-up in Health IT Settings
健康IT环境中检测结果跟踪的决策和临床工作
  • 批准号:
    8478684
  • 财政年份:
    2013
  • 资助金额:
    $ 49.91万
  • 项目类别:
Automated Point-of-Care Surveillance of Outpatient Delays in Cancer Diagnosis
对癌症诊断中门诊延误的自动护理点监测
  • 批准号:
    8399241
  • 财政年份:
    2013
  • 资助金额:
    $ 49.91万
  • 项目类别:
Decision Making and Clinical Work of Test Result Follow-up in Health IT Settings
健康IT环境中检测结果跟踪的决策和临床工作
  • 批准号:
    8719904
  • 财政年份:
    2013
  • 资助金额:
    $ 49.91万
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Developing Novel Technology for Data Driven Clinical Decision Making
开发数据驱动临床决策的新技术
  • 批准号:
    MR/Y007816/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.91万
  • 项目类别:
    Research Grant
Utilization of Co-occurrence Analysis of Nursing Observation Data for Clinical Decision Making
利用护理观察数据的共现分析进行临床决策
  • 批准号:
    23K09844
  • 财政年份:
    2023
  • 资助金额:
    $ 49.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancing Clinical Decision-Making in Modular Youth Psychotherapy
增强模块化青少年心理治疗的临床决策
  • 批准号:
    10750872
  • 财政年份:
    2023
  • 资助金额:
    $ 49.91万
  • 项目类别:
At-home diagnostics and AI algorithm to assist clinical decision making in reproductive health
家庭诊断和人工智能算法辅助生殖健康临床决策
  • 批准号:
    10025240
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
    Collaborative R&D
Improving Racial Equity in Clinical Decision Making about Access to Organ Transplant
改善器官移植临床决策中的种族平等
  • 批准号:
    10507407
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
Multimodal prediction of seizure recurrence after unprovoked first seizure to guide clinical decision-making: A multi-centre study of cognition, mood and brain connectivity as predictors
无端首次癫痫发作后癫痫复发的多模式预测以指导临床决策:认知、情绪和大脑连接作为预测因素的多中心研究
  • 批准号:
    461490
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
    Operating Grants
Machine Learning In Medicine: Evaluating Critical Barriers to Effective and Equitable Implementation Within Clinical Decision Making
医学中的机器学习:评估临床决策中有效和公平实施的关键障碍
  • 批准号:
    475628
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
    Studentship Programs
SBIR Phase I: A cognitive dashboard to support clinical decision making in neurosurgery
SBIR 第一阶段:支持神经外科临床决策的认知仪表板
  • 批准号:
    2213231
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
    Standard Grant
Decision making and dementia: from mechanisms to clinical trials
决策和痴呆:从机制到临床试验
  • 批准号:
    MC_UU_00030/14
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
    Intramural
TOPIC 438 - PREDICTION OF CANCER DRUG RESISTANCE TO AID IN CLINICAL DECISION MAKING
主题 438 - 预测癌症耐药性以帮助临床决策
  • 批准号:
    10699945
  • 财政年份:
    2022
  • 资助金额:
    $ 49.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了