ROS-targeted therapy for pancreatic cancer
ROS靶向治疗胰腺癌
基本信息
- 批准号:8963517
- 负责人:
- 金额:$ 46.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbraxaneAcute Myelocytic LeukemiaAdenocarcinoma CellAffectAntioxidantsApoptosisBiodistributionCaspaseCell DeathCell LineCell RespirationCellsCharacteristicsClinicalDNA DamageDrug resistanceEngineeringEpithelialEquilibriumFibroblastsGenerationsGenesGenetic TranscriptionGenetically Engineered MouseHumanKRAS2 geneLaboratoriesLeadLibrariesMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMediatingMetabolicMetabolismMitochondriaModelingMusMutateNecrosisNormal CellOncogenicOxidation-ReductionOxidative StressOxygen ConsumptionPancreasPancreatic Ductal AdenocarcinomaPathway interactionsPatientsPhosphorylationPlayPopulationProductionProto-Oncogene Proteins c-aktRadiation therapyReactive Oxygen SpeciesResearch PersonnelResveratrolRoleSafetySeriesSignal TransductionStem cellsTechnologyTestingTherapeutic InterventionToxic effectTransgenic MiceXenograft Modelanalogcancer cellcancer stem cellcancer therapychemotherapydesignextracellulargemcitabinein vivoinnovationmouse modelneoplastic cellnext generation sequencingnovelnovel therapeutic interventionparthenolidepublic health relevanceself-renewalsenescencestemtargeted treatmenttranscription factortumor
项目摘要
DESCRIPTION (provided by applicant): Cancer cells are under persistent oxidative stress. Oncogenic transformation such as with Kras, and metabolic alterations result in increased oxidative stress in tumor cells. Tumor cells adapt to persistent oxidative stress by activating redox sensitive transcription factors that increase the expression of endogenous antioxidants, promote survival pathways, induce chemoresistance, and reduce caspase activation. More significantly, ROS also plays an important role in the survival of cancer stem cells. A subset population of cancer stem cells contains lower ROS levels, thus providing protection against DNA damage such as radiotherapy. Moreover, the self-renewal capacity of cancer stem cells is sensitive to cellular ROS levels. Both bulk tumor and cancer stem cells are vulnerable to excess levels of ROS and this characteristic can be exploited for therapy. Our overarching hypothesis is that compounds able to effectively increase the levels of ROS in cancer cells will tip the balance towards cell death and can potentially overcome drug resistance. Recently, we screened a library of highly diverse compounds on an Extracellular Flux Analyzer that measures cellular respiration. Among hundreds of compounds screened, we identified DFC232, a compound that caused a maximum oxygen consumption rate (OCR) in Mia PaCa-2 cells. DFC232 induced rapid onset of ROS production and activation of AKT, followed by a substantial increase in the phosphorylation of the transcription factor FOXO3a, culminating in cell death. DFC232 shows single agent activity in a Mia PaCa-2 xenograft model with no signs of toxicity. In subsequent mechanistic studies, using a novel next-generation sequencing technology (Bru-Seq), we observed that DFC232 produced a remarkable inactivation of mitochondrial gene transcription by potentially affecting the D-loop. Our first round of ADMET-guided lead optimization campaign generated compounds (e.g. DFC325) with nanomolar potency in a panel of PDAC cell lines and remarkable single agent efficacy in mice. Our central hypothesis is that DFC232 and analogs induce ROS production, tipping the balance toward apoptosis. We further hypothesize that DFCs act through a novel mechanism by effectively disrupting transcription from the mitochondrial D-loop. Moreover, DFC analogs are novel agents with unique targets and have biodistribution, safety, and efficacy characteristics necessary for potential clinical benefit in PDAC treatment. To test our hypothesis we will focus on the following specific aims: Aim 1: To perform ADMET, metabolic, and PK-guided synthesis of novel analogs to enhance potency and efficacy. Aim 2: To perform mechanistic studies of top 5 compounds as single agent and in combination with gemcitabine and abraxane using Bru-Seq technology. Aim 3: To determine the in vivo efficacy of top 5 compounds as single agents and in combination with gem/abraxane in orthotopic and genetically engineered mouse models (GEMM) of KRAS driven pancreatic cancer.
描述(申请人提供):癌细胞处于持续的氧化应激状态。Kras等致癌转化和代谢改变导致肿瘤细胞氧化应激增加。肿瘤细胞通过激活氧化还原敏感的转录因子来适应持续的氧化应激,氧化还原敏感转录因子增加内源性抗氧化剂的表达,促进生存途径,诱导化疗耐药,并降低caspase的激活。更重要的是,ROS在癌症干细胞的存活中也起着重要作用。癌症干细胞的一个亚群含有较低的ROS水平,因此提供了对DNA损伤的保护,如放射治疗。此外,癌症干细胞的自我更新能力对细胞内的ROS水平很敏感。实体肿瘤和癌症干细胞都容易受到过量ROS的影响,这一特点可以用于治疗。我们的主要假设是,能够有效提高癌细胞中ROS水平的化合物将扭转平衡,使细胞死亡,并有可能克服耐药性。最近,我们在一台测量细胞呼吸的细胞外通量分析仪上筛选了一个高度多样化的化合物文库。在筛选的数百种化合物中,我们鉴定出DFC232,一种在Mia Paca-2细胞中引起最大耗氧率(OCR)的化合物。DFC232诱导ROS的产生和AKT的激活,随后转录因子FOXO3a的磷酸化显著增加,最终导致细胞死亡。DFC232在Mia Paca-2异种移植模型中显示出单剂活性,没有毒性迹象。在随后的机制研究中,使用一种新的下一代测序技术(Bru-Seq),我们观察到DFC232通过潜在地影响D-loop而产生显著的线粒体基因转录失活。我们的第一轮ADMET引导的先导优化活动在一组PDAC细胞系中产生了具有纳摩尔效力的化合物(例如DFC325),并在小鼠中产生了显著的单一药效。我们的中心假设是DFC232及其类似物诱导ROS产生,使平衡倾向于凋亡。我们进一步假设DFCs通过一种新的机制发挥作用,有效地扰乱线粒体D-环的转录。此外,DFC类似物是具有独特靶点的新型药物,具有潜在的PDAC治疗临床益处所必需的生物分布、安全性和有效性特征。为了验证我们的假设,我们将集中在以下具体目标上:目标1:在ADMET、代谢和PK指导下合成新的类似物,以提高效力和疗效。目的2:利用Bru-Seq技术对前5种药物作为单药以及与吉西他滨和阿布拉沙尼联合应用的机理进行研究。目的:研究前5种化合物单独及联合GEM/Abraxane对KRAS诱导的小鼠胰腺癌原位移植模型和基因工程小鼠模型的体内疗效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOURI NEAMATI其他文献
NOURI NEAMATI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOURI NEAMATI', 18)}}的其他基金
Preclinical Development of First-in-Class NDUFS7 Antagonists for the Treatment of Pancreatic Cancer
用于治疗胰腺癌的一流 NDUFS7 拮抗剂的临床前开发
- 批准号:
10684845 - 财政年份:2022
- 资助金额:
$ 46.1万 - 项目类别:
Preclinical Development of First-in-Class GSTO1 Degraders for Colorectal Cancer
首创的结直肠癌 GSTO1 降解剂的临床前开发
- 批准号:
10675586 - 财政年份:2022
- 资助金额:
$ 46.1万 - 项目类别:
gp130 as a novel therapeutic target in ovarian cancer
gp130作为卵巢癌的新治疗靶点
- 批准号:
8797755 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
gp130 as a novel therapeutic target in ovarian cancer
gp130作为卵巢癌的新治疗靶点
- 批准号:
8994723 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
gp130 as a novel therapeutic target in ovarian cancer
gp130作为卵巢癌的新治疗靶点
- 批准号:
9903250 - 财政年份:2015
- 资助金额:
$ 46.1万 - 项目类别:
High Throughput Screen for Myotonic Dystrophy Type 1
1 型强直性肌营养不良的高通量筛查
- 批准号:
8209483 - 财政年份:2011
- 资助金额:
$ 46.1万 - 项目类别:
Inhibition of HIV-1 Integrase-LEDGF/P75 Interactions
HIV-1 整合酶-LEDGF/P75 相互作用的抑制
- 批准号:
7897668 - 财政年份:2009
- 资助金额:
$ 46.1万 - 项目类别:
相似海外基金
Computing analysis of leukemic stem cell dynamics in acute myelocytic leukemia
急性粒细胞白血病白血病干细胞动力学的计算分析
- 批准号:
19K08356 - 财政年份:2019
- 资助金额:
$ 46.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of immunotoxins with super-targeting mAb in the acute myelocytic leukemia
在急性髓细胞白血病中使用超靶向单克隆抗体产生免疫毒素
- 批准号:
23501309 - 财政年份:2011
- 资助金额:
$ 46.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DETERMINANTS OF RESPONSE OF ACUTE MYELOCYTIC LEUKEMIA
急性粒细胞白血病反应的决定因素
- 批准号:
3556971 - 财政年份:1980
- 资助金额:
$ 46.1万 - 项目类别:
DETERMINANTS OF RESPONSE OF ACUTE MYELOCYTIC LEUKEMIA
急性粒细胞白血病反应的决定因素
- 批准号:
3556968 - 财政年份:1980
- 资助金额:
$ 46.1万 - 项目类别:
ERADICATION OF ACUTE MYELOCYTIC LEUKEMIA CELLS BY MAB THERAPY
通过 MAB 疗法根除急性粒细胞白血病细胞
- 批准号:
3889304 - 财政年份:
- 资助金额:
$ 46.1万 - 项目类别:














{{item.name}}会员




