TGF-beta latency and activation
TGF-β潜伏期和激活
基本信息
- 批准号:8963063
- 负责人:
- 金额:$ 39.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-07 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityBindingBinding ProteinsBiochemicalBiological AvailabilityBlood PlateletsBone GrowthBone Morphogenetic ProteinsBrainCell surfaceCellsCleaved cellComplexCoupledDeuteriumDevelopmentDiseaseDrosophila pros proteinEndoplasmic ReticulumExtracellular MatrixFamily memberFibrosisGlycoproteinsGrantGrowth FactorHeadHealthHeartHumanHydrogenImmuneImmune responseIntegrin BindingIntegrinsIschemiaKineticsLTBP2 geneLigandsMalignant NeoplasmsMarfan SyndromeMass Spectrum AnalysisMeasurementMediatingMethodsMolecularMolecular ConformationMuscleMuscle WeaknessMutagenesisMutationMyalgiaPeptide HydrolasesPeptidesPhysiologicalPlayProcessProgressive Diaphyseal DysplasiaProtein BindingProtein IsoformsProteinsProteolysisRGD (sequence)RegulationRegulatory T-LymphocyteRoleSignal TransductionSiteSolutionsSpecificityStrokeStructureSurfaceTailTestingTherapeuticThermodynamicsThrombosisTissuesTransforming Growth Factor betaWound Healingbasebonecell growthdimerin vivoinhibininsightmacromoleculemonomermutantnanocageneoplastic cellnovel therapeutic interventionnovel therapeuticspreventprotein complexreceptorrepairedresearch studytherapeutic developmenttissue repairtumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Transforming growth factor beta (TGF-ß) plays pivotal roles in development of tissues including bone and muscle, wound healing, immune regulation, and tumor-cell growth and inhibition. TGF-ß regulates repair in all tissues including brain, heart, and bone, and after ischemia and stroke. Mutations in the TGF-ß1 prodomain cause Camurati-Engelmann disease, which manifests as abnormal bone growth with muscle weakness and pain. TGF-ß1, 2 and 3 are synthesized as pro-proteins that dimerize and associate with presenting molecules, latent TGF-ß binding protein (LTBP) or glycoprotein-A repetitions predominant protein (GARP), in the endoplasmic reticulum. Furin cleaves between the prodomain and growth factor domain; however, the prodomain dimer remains noncovalently associated with the growth factor dimer in
pro-TGF-ß after secretion. LTBP and GARP bind to the prodomains and store pro-TGF-ßs in the extracellular matrix and on the cell surface, respectively. Although stored in tissues, large latent complexes are biologically inactive because the prodomains encircling the TGF-ß dimer prevent binding to TGF-ß receptors. The key regulatory step in TGF-ß signaling is release of TGF-ß from latency. Integrins aVß6 and aVß8 bind to a specific motif that includes RGD in pro-TGF-ß1 and 3 and activate them, but not pro-TGF-ß2. Integrin-mediated activation requires pro-TGF-ß association with LTBP or GARP. In this grant, we study how aV integrins bind and activate pro-TGF-ß1 and 3, how structural differences between pro-TGF-ß1 and 2 correlate with different activation mechanisms, and how LTBP and GARP contribute to TGF-ß latency. Solving crystal structures of pro-TGF-ß1, integrin aVß6 headpiece alone or in complex with TGF-ß3 peptide, and integrin aVß6 head in complex with human pro-TGF- ß1 macromolecule, coupled with affinity, kinetics, and thermodynamic measurements will reveal conformational changes that occur upon binding and the molecular basis for how integrin aVß6 binds pro-TGF- ß1 with high affinity and specificity, but not pro-TGF-ß2. Potential structure-based therapeutics are also emerging. To better understand TGF-ß structure in the context in which it is kept latent, stored, and activated in vivo, we will study po-TGF-ß1 and 2 and their complexes with LTBP or GARP. We will solve crystal and SAXS structures of pro-TGF-ß1 and 2 and probe their dynamics in solution using proteolysis and hydrogen/deuterium exchange methods. We will solve at least one complex with LTBP or GARP. These experiments will provide key structural insight into conformational changes upon binding. Furthermore, kinetics and affinity measurements on mature TGF-ß1 and 2 binding to free prodomains and LTBP- or GARP-associated prodomains will provide a quantitative, biochemical characterization of their respective interactions. Structural information on pro-TGF-ß1 and 2, and complexes with LTBP or GARP, will provide critical insight into how pro- TGF-ß1 and 2 differ in their latency and activation mechanisms and new therapeutic approaches.
描述(由适用提供):转化生长因子β(TGF-ß)在骨骼和肌肉,伤口愈合,免疫调节以及肿瘤细胞生长和抑制等组织中起关键作用。 TGF-ß调节所有组织中的修复,包括大脑,心脏和骨骼,以及缺血和中风后。 TGF-ß1prodomain中的突变会引起comurati-engelmann疾病,这表现为异常的骨骼生长,肌肉无力和疼痛。 TGF-ß1、2和3被合成为蛋白质,与呈现分子,潜在的TGF-ß结合蛋白(LTBP)或糖蛋白-a重复的分子相关并相关。术语在prodomain和生长因子结构域之间切割;但是,prodomain二聚体与生长因子二聚体无共价相关
分泌后pro-tgf-ß。 LTBP和GARP分别在细胞外基质和细胞表面结合了Prodomains,并将pro-TGF-ß存储在细胞表面上。尽管存储在组织中,但大型潜在复合物在生物学上是无活性的,因为包围TGF-ß二聚体的prodomain会阻止与TGF-ß受体结合。 TGF-ß信号传导中的关键调节步骤是从延迟中释放TGF-β。整合素Avß6和Avß8与特定的基序结合,该基序在Pro-TGF-ß1和3中包括RGD并激活它们,但不激活pro-tgf-ß2。整联蛋白介导的激活需要与LTBP或GARP相关性。在这笔赠款中,我们研究了AV整合素如何结合和激活pro-TGF-ß1和3,即Pro-TGF-ß1和2之间的结构差异如何与不同的激活机制相关,以及LTBP和GARP如何促进TGF-β潜伏期。求解pro-tgf-ß1,整合avß6头台的晶体结构,或与TGF-ß3胡椒的复杂性,以及与人pro-tgf-ß1大分子复杂的整合素avß6头,与亲和力,动力学测量和热力学测量相结合,与构造的构造 - 构造的粘合物变化相结合,与构造的自动化相结合,与构造的构造变化相结合。亲和力和特异性,但不是pro-tgf-ß2。潜在的基于结构的治疗也正在出现。为了更好地理解TGF-ß结构在保持潜在,存储和激活的情况下,我们将研究PO-TGF-β1和2及其与LTBP或GARP的复合物。我们将使用蛋白水解和氢/氘交换方法求解Pro-TGF-β1和2的晶体结构,并在溶液中探测它们的动力学。我们将使用LTBP或GARP解决至少一个复合体。这些实验将为绑定后的会议变化提供关键的结构洞察力。此外,成熟的TGF-ß1和2结合与游离podomains以及LTBP或GARP相关的成果的动力学和亲和力测量将提供其各自相互作用的定量生化特征。 Pro-TGF-ß1和2的结构信息以及使用LTBP或GARP的复合物将对Pro-TGF-ß1和2的潜伏和激活机制以及新的治疗方法有何不同。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY A SPRINGER其他文献
TIMOTHY A SPRINGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY A SPRINGER', 18)}}的其他基金
Structural basis of von Willebrand factor biology and physics
冯维勒布兰德因子生物学和物理学的结构基础
- 批准号:
10198035 - 财政年份:2019
- 资助金额:
$ 39.82万 - 项目类别:
Structural basis of von Willebrand factor biology and physics
冯维勒布兰德因子生物学和物理学的结构基础
- 批准号:
10434710 - 财政年份:2019
- 资助金额:
$ 39.82万 - 项目类别:
Structures and Conformational Equilibria of Integrin alpha5 beta1
整合素α5β1的结构和构象平衡
- 批准号:
9079774 - 财政年份:2016
- 资助金额:
$ 39.82万 - 项目类别:
Structures and Conformational Equilibria of Integrin alpha5 beta1
整合素α5β1的结构和构象平衡
- 批准号:
9265127 - 财政年份:2016
- 资助金额:
$ 39.82万 - 项目类别:
Structural mechanisms underlying latency and activation of GDF8
GDF8 潜伏期和激活的结构机制
- 批准号:
9302311 - 财政年份:2016
- 资助金额:
$ 39.82万 - 项目类别:
Structural mechanisms underlying latency and activation of GDF8
GDF8 潜伏期和激活的结构机制
- 批准号:
9175103 - 财政年份:2016
- 资助金额:
$ 39.82万 - 项目类别:
相似国自然基金
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习预测小分子与人类突变激酶结合亲和力的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
反复非平衡结合联合迭代筛选发掘混合物中痕量高亲和力配体的方法及其应用
- 批准号:82273900
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
全新从头快速设计靶向COVID-19病毒及其突变株S蛋白超高亲和力阻断结合蛋白研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 39.82万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 39.82万 - 项目类别:
Selective targeting of matrix metalloproteinases for developing preterm labor therapeutics
选择性靶向基质金属蛋白酶用于开发早产疗法
- 批准号:
10509786 - 财政年份:2023
- 资助金额:
$ 39.82万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 39.82万 - 项目类别: