Prevention Economic Impact Model (PEIM)

预防经济影响模型 (PEIM)

基本信息

  • 批准号:
    8976329
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The proposed Fast Track SBIR grant application is for the creation of a Web-based, Interactive Prevention Economic Impact Model (PEIM) which enables substance abuse prevention organizations to (1) select cost/effective evidence-based interventions for specific target populations and (2) estimate the economic impact of prevention using service delivery data and current science-based economic impact estimation models. Potential clients for this innovation include but are not limited to; state agencies that manage substance abuse prevention service delivery, county, regional, local prevention service organizations, school districts, and community coalitions funded by government and private foundations. Demonstrating the economic impact of substance abuse prevention service interventions with systematic data in a public health framework is imperative for generating continued public support to sustain and enhance a nationwide substance abuse prevention effort. The PEIM will be developed based on major advancements in two specific areas of the substance abuse prevention field: (1) the standardization of prevention data collection and (2) prevention economic impact research. In Phase I of the SBIR grant, the goal is to develop a prototype PEIM based on the cost/benefit ratios and economic burden rates PIRE has already established for 38 evidence based prevention programs (EBP). A focus group study will be conducted to evaluate the prototype and collect feedback from target users of PEIM. In Phase II, the economic impact estimation algorithms will be expanded to additional (up to 30) prevention interventions to be included in PEIM. A pilot test study involving 60 sites of multiple market sectors will be conducted for a systematic assessment of the usefulness and usability of PEIM. Based on the feedback from the pilot sites, scalable, commercial grade PEIM software will be developed and tested for going to market in Phase III.
 描述(由申请人提供):拟议的快速通道SBIR赠款申请是为了创建一个基于网络的交互式预防经济影响模型(PEIM),使药物滥用预防组织能够(1)为特定目标人群选择成本/有效的循证干预措施,以及(2)使用服务提供数据和当前基于科学的经济影响估计模型估计预防的经济影响。这一创新的潜在客户包括但不限于:管理药物滥用预防服务提供的州机构,县,地区,地方预防服务组织,学区以及由政府和私人基金会资助的社区联盟。在公共卫生框架内用系统的数据证明药物滥用预防服务干预措施的经济影响,对于产生持续的公众支持以维持和加强全国范围的药物滥用预防工作至关重要。将根据药物滥用预防领域两个具体领域的重大进展制定PEIM:(1)预防数据收集的标准化和(2)预防经济影响研究。在SBIR赠款的第一阶段,目标是根据PIRE已经为38个循证预防方案(EBP)建立的成本/效益比和经济负担率,开发一个PEIM原型。将进行一项焦点小组研究,以评估原型,并收集PEIM目标用户的反馈。在第二阶段,经济影响估计算法将扩大到包括在PEIM中的其他(多达30个)预防干预措施。将进行一项涉及多个市场部门的60个地点的试点测试研究,以系统地评估PEIM的有用性和可用性。根据试点站点的反馈,将开发可扩展的商业级PEIM软件,并在第三阶段进行测试以推向市场。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoyan Zhang其他文献

Xiaoyan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoyan Zhang', 18)}}的其他基金

PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Gra
PHS 2018-02 NIH、CDC 和 FDA 小型企业创新研究综合征集
  • 批准号:
    10471757
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
Demand Reduction Smart Tool for Analysis and Research(STAR)
减少需求智能分析和研究工具(STAR)
  • 批准号:
    9202067
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
Linking Information, Families and Technology (LIFT)
连接信息、家庭和技术 (LIFT)
  • 批准号:
    6990440
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
A Web-based IT Solution for Outcome-based Prevention
基于 Web 的 IT 解决方案,用于基于结果的预防
  • 批准号:
    6550378
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
A web-based IT Solution for Outcome Based Prevention
基于网络的基于结果的预防 IT 解决方案
  • 批准号:
    6831987
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
A web-based IT Solution for Outcome Based Prevention
基于网络的基于结果的预防 IT 解决方案
  • 批准号:
    6949972
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了