Rational design of small interfering RNA for genome-wide target knockdown
用于全基因组靶标敲除的小干扰RNA的合理设计
基本信息
- 批准号:8978283
- 负责人:
- 金额:$ 34.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-22 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithm DesignAlgorithmsApplications GrantsBioinformaticsCatalogingCatalogsCellsCommunitiesComplexComputer SimulationDataDatabasesDevelopmentExperimental ModelsFoundationsGene SilencingGene TargetingGenesGenetic TranscriptionGoalsHigh-Throughput RNA SequencingHumanIndividualLibrariesLifeMachine LearningMethodsModelingMusProcessRNARNA InterferenceRNA Sequence AnalysisRNA SequencesResearchResourcesServicesSmall Interfering RNASmall RNASolidSpecificityTechniquesTechnologyTherapeuticTimeValidationbasebiological researchclinical applicationdesigngene functiongenome-widegenome-wide analysisimprovedinterestnext generationpublic health relevancesuccesstooltranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): RNA interference (RNAi) is a small RNA-guided gene silencing process within living cells. The RNAi technique is widely used in both biological research and clinical applications because it has the ability to knockdown essentially any gene of interest. However, one major unresolved issue in RNAi studies is non-specific gene silencing. It is well known that, in addition to the single intended gene target, many unintended targets are also simultaneously silenced. Thus, there is an urgent need to develop new methods for improving RNAi specificity. RNAi specificity and potency are determined by the small interfering RNA (siRNA) in the silencing complex. We propose the hypothesis that gene silencing specificity can be significantly improved with rational siRNA design. We have previously developed a machine learning algorithm for the design of widely-distributed commercial siRNAs. Based on this commercial success, we propose to further develop a new method for genome-wide design of next-generation siRNAs with significantly reduced off-target effects. The new design method will lay a solid foundation for further commercial development of siRNA products that can be used in a variety of RNAi-based applications.
描述(申请人提供):RNA干扰(RNAi)是活细胞内一种小RNA引导的基因沉默过程。RNAi技术被广泛用于生物学研究和临床应用,因为它具有基本上敲除任何感兴趣基因的能力。然而,RNAi研究中一个尚未解决的主要问题是非特异性基因沉默。众所周知,除了单个预期的基因靶标之外,许多非预期的靶标也同时沉默。因此,迫切需要开发用于改善RNAi特异性的新方法。RNAi的特异性和效力由沉默复合物中的小干扰RNA(siRNA)决定。我们提出的假设,基因沉默的特异性可以显着提高与合理的siRNA设计。我们之前已经开发了一种用于设计广泛分布的商业siRNA的机器学习算法。基于这一商业上的成功,我们建议进一步开发一种新的方法,用于下一代siRNA的全基因组设计,并显着降低脱靶效应。新的设计方法将为进一步商业化开发可用于各种基于RNAi的应用的siRNA产品奠定坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weijun Liu其他文献
Weijun Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weijun Liu', 18)}}的其他基金
New Assays for Expression Profiling of MicroRNAs
MicroRNA 表达谱的新检测方法
- 批准号:
8902301 - 财政年份:2015
- 资助金额:
$ 34.71万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.71万 - 项目类别:
Continuing Grant