Ion Channels and Signaling Mechanisms in T Lymphocytes
T 淋巴细胞中的离子通道和信号传导机制
基本信息
- 批准号:8854089
- 负责人:
- 金额:$ 60.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:ArthritisAutoimmune DiseasesAutoimmune ProcessAutoimmunityBindingBinding SitesBoratesCalciumCalcium ChannelCalmodulinCell membraneCellsComplexDiabetes MellitusDiffusionEctodermal DysplasiaElectrophysiology (science)Endoplasmic ReticulumEngineeringEquilibriumFeedbackFluorescence Resonance Energy TransferGoalsHumanImmune Cell ActivationImmune responseImmune systemImmunityImmunologic Deficiency SyndromesIndividualIon ChannelKineticsLeadLipidsLobeLocationLupusMeasurementModelingMuscleMutagenesisMutationMyopathyOrgan TransplantationOrganellesPatientsPeptidesPharmaceutical PreparationsPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhysiologicalPhysiological ProcessesProbabilityProcessProteinsRecruitment ActivityRegulationResolutionRoleSTIM1 geneSevere Combined ImmunodeficiencySignal TransductionSiteT-LymphocyteTechniquesTherapeuticTimecell motilitydesigndrug developmentmolecular scalemutantnanometernanoscaleparticlephotoactivationpreventresidencescreeningsensorsingle moleculestoichiometrytool
项目摘要
DESCRIPTION (provided by applicant): Store-operated Ca2+ channels (SOCs) generate Ca2+ signals that are critical for many physiological processes ranging from immune cell activation and differentiation to muscle activity, secretion, and motility, and loss of SOC functio in humans leads to a devastating severe combined immunodeficiency with additional myopathy and ectodermal dysplasia. Remarkable progress has been made recently in delineating a diffusion-trap mechanism to explain how these channels are activated. Depletion of Ca2+ from the endoplasmic reticulum (ER) causes STIM1, an ER Ca2+ sensor, to oligomerize, leading to its accumulation at ER-plasma membrane (PM) junctions. At these sites STIM1 binds to Orai1, the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel, to trap it and activate local Ca2+ entry across the PM. However, comparatively little is known about the several processes that control the strength of signaling through the CRAC channel after the STIM-Orai complex has formed; these include feedback inhibition via Ca2+-dependent inactivation (CDI), limits on channel open probability imposed by the stoichiometry of STIM-Orai binding, and the dynamics of STIM1 and Orai1 retention at ER-PM junctions. This proposal applies electrophysiology, mutagenesis of STIM1 and tetrameric Orai1 concatemer channels, and superresolution single-particle tracking techniques to understand how these three processes regulate Ca2+ entry through CRAC channels. Recent findings have revealed required roles for STIM1, calmodulin (CaM) and the intracellular II-III loop of Orai1 in the CDI mechanism. In Aim 1, we will construct concatemeric Orai1 channels with reduced numbers of CaM and STIM1 binding sites to explore how CaM binding, STIM1 binding, and interactions with the II-III loop impact CDI. Several lines of evidence suggest that only a small fraction of CRAC channels at ER-PM junctions are active, even when ER Ca2+ stores are fully depleted, and this large reservoir of dormant channels can be mobilized by the drug 2- aminoethyldiphenyl borate (2-APB). In Aim 2 we will use 2-APB and CRAC channels with variable numbers of STIM1 binding sites to determine how channels become dormant and how 2-APB recruits them to the active state. Finally, photoactivation studies show that the residence time of STIM1 and Orai1 at the ER-PM junction is rather short, placing limits on the amounts of STIM1 and Orai1 that can accumulate to form active CRAC channel complexes. In Aim 3 we will apply single-molecule tracking techniques to characterize the diffusion and confinement of STIM1 and Orai1 under various conditions with nanometer precision, and identify the critical protein-protein and protein-lipid interactions that control the mobility and retention of STIM1 and Orai1 at ER-PM junctions. Overall, the results of these studies will increase our understanding of how the strength of store-operated signals is controlled under physiological conditions, and suggest new strategies for up- or down-regulating these signals to provide new treatments for autoimmune and immunodeficiency syndromes.
描述(由申请人提供):钙池操纵的Ca 2+通道(SOC)产生Ca 2+信号,这些信号对于从免疫细胞活化和分化到肌肉活性、分泌和运动的许多生理过程至关重要,人类SOC功能的丧失导致毁灭性的严重联合免疫缺陷,伴有其他肌病和外胚层发育不良。最近在描述扩散陷阱机制以解释这些通道如何被激活方面取得了显着进展。内质网(ER)中Ca 2+的耗竭导致ER Ca 2+传感器STIM 1寡聚化,导致其在ER-质膜(PM)连接处积聚。在这些位点,STIM 1结合到Orai 1,即Ca 2+释放激活的Ca 2+(CRAC)通道的成孔亚基,以捕获它并激活局部Ca 2+进入PM。然而,对STIM-Orai复合物形成后通过CRAC通道控制信号强度的几个过程知之甚少;这些过程包括通过Ca 2+依赖性失活(CDI)的反馈抑制,STIM-Orai结合的化学计量对通道开放概率的限制,以及STIM 1和Orai 1在ER-PM连接处保留的动力学。该提案应用电生理学,STIM 1和四聚体Orai 1串联体通道的诱变,以及超分辨单粒子跟踪技术来了解这三个过程如何通过CRAC通道调节Ca 2+进入。最近的研究结果揭示了STIM 1,钙调素(CaM)和Orai 1的细胞内II-III环在CDI机制中所需的作用。在目标1中,我们将构建具有减少数量的CaM和STIM 1结合位点的串联Orai 1通道,以探索CaM结合,STIM 1结合以及与II-III环的相互作用如何影响CDI。一些证据表明,即使当ER Ca 2+储存完全耗尽时,ER-PM连接处只有一小部分CRAC通道是活跃的,并且这种大量的休眠通道可以被药物2-氨基乙基二苯基硼酸酯(2-APB)动员。在目标2中,我们将使用具有可变数目的STIM 1结合位点的2-APB和CRAC通道来确定通道如何变得休眠以及2-APB如何将它们招募到活性状态。最后,光活化研究表明,STIM 1和Orai 1在ER-PM交界处的停留时间相当短,限制了STIM 1和Orai 1可以积累形成活性CRAC通道复合物的量。在目标3中,我们将应用单分子跟踪技术以纳米精度表征STIM 1和Orai 1在各种条件下的扩散和限制,并确定控制STIM 1和Orai 1在ER-PM结处的流动性和保留的关键蛋白质-蛋白质和蛋白质-脂质相互作用。总的来说,这些研究的结果将增加我们对在生理条件下如何控制存储操作信号的强度的理解,并提出上调或下调这些信号的新策略,为自身免疫和免疫缺陷综合征提供新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD S LEWIS其他文献
RICHARD S LEWIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD S LEWIS', 18)}}的其他基金
Molecular and cellular mechanisms of store-operated calcium channels
钙池操纵的钙通道的分子和细胞机制
- 批准号:
10623620 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
ION CHANNELS AND SIGNALING MECHANISMS IN T LYMPHOCYTES
T 淋巴细胞中的离子通道和信号传导机制
- 批准号:
6018824 - 财政年份:1991
- 资助金额:
$ 60.47万 - 项目类别:
ION CHANNELS AND SIGNALING MECHANISMS IN T LYMPHOCYTES
T 淋巴细胞中的离子通道和信号传导机制
- 批准号:
2183119 - 财政年份:1991
- 资助金额:
$ 60.47万 - 项目类别:
ION CHANNELS AND SIGNALING MECHANISMS IN T LYMPHOCYTES
T 淋巴细胞中的离子通道和信号传导机制
- 批准号:
2444775 - 财政年份:1991
- 资助金额:
$ 60.47万 - 项目类别:
ION CHANNELS AND SIGNALING MECHANISMS IN T LYMPHOCYTES
T 淋巴细胞中的离子通道和信号传导机制
- 批准号:
6386034 - 财政年份:1991
- 资助金额:
$ 60.47万 - 项目类别:
Ion Channels and Signaling Mechanisms in T Lymphocytes
T 淋巴细胞中的离子通道和信号传导机制
- 批准号:
9238964 - 财政年份:1991
- 资助金额:
$ 60.47万 - 项目类别:
Ion Channels and Signaling Mechanisms in T Lymphocytes
T 淋巴细胞中的离子通道和信号传导机制
- 批准号:
8686868 - 财政年份:1991
- 资助金额:
$ 60.47万 - 项目类别:
ION CHANNELS AND SIGNALING MECHANISMS IN T LYMPHOCYTES
T 淋巴细胞中的离子通道和信号传导机制
- 批准号:
3304830 - 财政年份:1991
- 资助金额:
$ 60.47万 - 项目类别:
ION CHANNELS AND SIGNALING MECHANISMS IN T LYMPHOCYTES
T 淋巴细胞中的离子通道和信号传导机制
- 批准号:
3304828 - 财政年份:1991
- 资助金额:
$ 60.47万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Effects of maternal immune activation on autoimmune diseases in offsprings
母体免疫激活对后代自身免疫性疾病的影响
- 批准号:
23H02155 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Autoantibodies and antibody-secreting cells in neurological autoimmune diseases: from biology to therapy
神经性自身免疫性疾病中的自身抗体和抗体分泌细胞:从生物学到治疗
- 批准号:
479128 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Operating Grants
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10788032 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Biomarkers of vascular endothelial dysfunction in systemic autoimmune diseases: analysis of circulating microRNAs
系统性自身免疫性疾病中血管内皮功能障碍的生物标志物:循环 microRNA 分析
- 批准号:
23K14742 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NOVEL HUMORAL AND CELLULAR BIOMARKERS OF AUTOIMMUNE DISEASES CAUSED BY IMMUNOTHERAPY
免疫治疗引起的自身免疫性疾病的新型体液和细胞生物标志物
- 批准号:
10593224 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Structural mechanisms of autoimmune diseases targeting cys-loop receptors
针对半胱氨酸环受体的自身免疫性疾病的结构机制
- 批准号:
10864719 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Developing non-immunosuppressive immune-based therapeutics for targeted treatment of autoimmune diseases
开发非免疫抑制性免疫疗法来靶向治疗自身免疫性疾病
- 批准号:
10586562 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Regulation of autoimmune diseases by PTPN22 phosphatase
PTPN22磷酸酶对自身免疫性疾病的调节
- 批准号:
23K06589 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Decipher and target GABA metabolism and GABA receptor-mediated signaling in autoimmune diseases
破译并靶向自身免疫性疾病中的 GABA 代谢和 GABA 受体介导的信号传导
- 批准号:
10623380 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Targeting the long isoform of the prolactin receptor to treat autoimmune diseases and B-cell malignancies
靶向催乳素受体的长亚型来治疗自身免疫性疾病和 B 细胞恶性肿瘤
- 批准号:
10735148 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别: