Dual High-Throughput Imaging Screen for Nucleolar Integrity and RNA Transcription

用于核仁完整性和 RNA 转录的双重高通量成像筛选

基本信息

  • 批准号:
    8786874
  • 负责人:
  • 金额:
    $ 33.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cancers have altered transcriptional programs that lead to deregulation of normal cellular functions and support the cancer cell characteristics. A prerequisite for the cancer cell is an increase in its ribosynthetic activity to support the increaed protein synthetic needs. These processes are governed by RNA polymerase I (Pol I), which is highly responsive to external stimuli and commonly hyperactivated in cancer. Yet, it has not been exploited as a clinically relevant target. Pol I transcription and ribosome biosynthesis are exquisite processes of the nucleolus. Aberration of Pol I transcription leads to nucleolar stress and disintegration of the nucleolus leading to a distinctive, identifiable cellular phenotype. This project sets forth a dual cell-based high-content imaging screen, adaptable to high-throughput screening (HTS) platforms, for regulators of nucleolar stress and of Pol I. The screen will utilize as identifiable marks, the translocation of a nucleolar fluorescent fusion protein stably integrate in cancer cells and the expression of the catalytic subunit of Pol I. Data presented here show that the Pol I catalytic subunit can be selectively targeted for degradation and that its targetingis associated with decreased cancer cell viability. This project aims to define the feasibility of thee readouts for HTS platforms, and to demonstrate the suitability and reproducibility of the assay to identify novel regulators. The rationale for the proposed work is that it will provide fundamentall novel screening tools for regulation of Pol I activity. The goal is to employ the screen to identif, firstly, inhibitors of nucleolar activities and secondly, specific regulators of the Pol I catalyti subunit. Towards these goals, in Aim 1, the dual-screening assay will be established, tested and parameters will be set for hit thresholds. Using a defined chemical library of pharmaceuticals in current therapy use, Aim 2 has been devised to systematically screen for drugs and compounds that affect the nucleolar integrity and Pol I transcription, and to provide verification of the assy set-up and reproducibility for high-throughput platforms. Aim 3 has been designed to validate the screen hits through secondary screens and assays that determine which Pol I complex factors and nucleolar processes are affected. These approaches will define the current drug space affecting Pol I, identify potential new effects beneficial for therapeutic outcome, and support application of the screen to diverse large-scale chemical library collections. The study will significantly increase the understanding how inhibition of rRNA transcription contributes to curb growth of cancer cells, and identify new drugs and small-molecule lead molecules in this process.
描述(由申请人提供):癌症改变了转录程序,导致正常细胞功能失调并支持癌细胞特征。癌细胞的先决条件是其核糖合成活性的增加,以支持增加的蛋白质合成需求。这些过程由RNA聚合酶I(Pol I)控制,RNA聚合酶I对外部刺激高度敏感,通常在癌症中过度活化。然而,它还没有被开发为临床相关的目标。Pol I的转录和核糖体的生物合成是核仁的精细过程。Pol I转录的畸变导致核仁应激和核仁解体,从而导致独特的、可识别的细胞表型。这 项目提出了一种基于双细胞的高内涵成像屏幕,适用于高通量筛选(HTS)平台,用于核仁应激和Pol I的调节剂。该筛选将利用稳定整合在癌细胞中的核仁荧光融合蛋白的易位和Pol I的催化亚基的表达作为可识别的标记。这里提供的数据表明,Pol I催化亚基可以被选择性地靶向降解,并且其靶向与癌细胞活力降低相关。该项目旨在确定HTS平台的三个读数的可行性,并证明该测定法用于鉴定新型调节剂的适用性和重现性。所提出的工作的基本原理是,它将提供fundamentall新的筛选工具,调节Pol I活性。我们的目标是采用屏幕识别,首先,抑制剂的核仁活动,其次,具体的调节剂的Pol I catalyti亚基。为了实现这些目标,在目标1中,将建立、测试双重筛选测定法,并设定命中阈值的参数。使用目前治疗使用的药物的定义的化学库,目的2已被设计为系统地筛选影响核仁完整性和Pol I转录的药物和化合物,并提供高通量平台的assy设置和再现性的验证。目的3旨在通过二级筛选和测定来验证筛选命中,以确定哪些Pol I复合物因子和核仁过程受到影响。这些方法将定义当前影响Pol I的药物空间,确定有益于治疗结果的潜在新效应,并支持将筛选应用于各种大规模化学文库。该研究将显着增加对rRNA转录抑制如何有助于抑制癌细胞生长的了解,并在这一过程中识别新药和小分子先导分子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marikki Laiho其他文献

Marikki Laiho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marikki Laiho', 18)}}的其他基金

Mechanistic analyses of a novel RNA polymerase I transcription checkpoint
新型RNA聚合酶I转录检查点的机制分析
  • 批准号:
    9979913
  • 财政年份:
    2017
  • 资助金额:
    $ 33.62万
  • 项目类别:
Mechanistic analyses of a novel RNA polymerase I transcription checkpoint
新型RNA聚合酶I转录检查点的机制分析
  • 批准号:
    9381702
  • 财政年份:
    2017
  • 资助金额:
    $ 33.62万
  • 项目类别:
Chemogenomic Profiling of a Novel RNA Polymerase I Inhibitor
新型 RNA 聚合酶 I 抑制剂的化学基因组分析
  • 批准号:
    9190326
  • 财政年份:
    2016
  • 资助金额:
    $ 33.62万
  • 项目类别:
Dual High-Throughput Imaging Screen for Nucleolar Integrity and RNA Transcription
用于核仁完整性和 RNA 转录的双重高通量成像筛选
  • 批准号:
    8628965
  • 财政年份:
    2014
  • 资助金额:
    $ 33.62万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了