Targets and mechanism of a radical SAM enzyme involved in the cellular antiviral response
参与细胞抗病毒反应的自由基 SAM 酶的靶标和机制
基本信息
- 批准号:8960243
- 负责人:
- 金额:$ 29.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-deoxyadenosineAnimalsAntiviral AgentsAntiviral ResponseBindingBiochemicalC-terminalCatabolismCatalysisCell LineCellsChemistryCholesterolCleaved cellComplexCrystallizationDataEndoplasmic ReticulumEnzymesEpitopesEukaryotic CellFamilyFatty AcidsGene Expression RegulationGenesGoalsHIVHepatitis CHumanHuman VirusIn VitroInfectionInfection preventionInfluenzaInfluenza A virusInterferonsInvestigationLaboratoriesLeadLipidsMammalian CellMediatingMetabolismMitochondriaModificationMultienzyme ComplexesPathway interactionsPeptidesPhysiologicalPlayPost-Translational Protein ProcessingProcessProteinsProteomicsReactionRegulationResearchRoleS-AdenosylmethionineSystemVertebral columnViralVirusVirus Diseasesbasecholesterol biosynthesiseffective therapyexperiencefarnesyl pyrophosphatefatty acid oxidationflexibilityin vivoinsightinterestmembermetabolomicsmevalonatemicrobialoxidationpathogenpreventpublic health relevanceresearch studyviperin
项目摘要
DESCRIPTION (provided by applicant): Eukaryotic cells have developed sophisticated defenses aimed at limiting viral replication and thereby preventing infection from escalating to other cells. Among the many interferon-stimulated genes whose expression is up-regulated in the antiviral response is viperin (Virus Inhibitory Protein; Endoplasmic Reticulum associated, INterferon inducible), which has been shown to restrict the infectivity of a number of important human viruses including influenza A, HIV and hepatitis C. One of the most interesting features of viperin is that it appears to be a member of the radical SAM enzyme family; these enzymes reductively cleave S- adenosylmethionine to generate an adenosyl radical that is essential for catalysis. The involvement of radical SAM chemistry in the mammalian antiviral response was completely unexpected, as the radical SAM enzymes so far studied have almost exclusively been involved in microbial metabolism. Studies in mammalian cells have implicated a number of proteins, both cellular and viral, as targets of viperin. However, none of these interactions have been characterized directly and the mechanism(s) by which viperin inhibits its target enzymes, including the role of radical SAM chemistry in the reaction, remain unknown. We propose to study the interaction of viperin with farnesyl pyrophosphate synthase (FPPS), a key enzyme in the mevalonate biosynthetic pathway and the best-characterized target of viperin. Based on our preliminary data and well-documented protein modifications catalyzed by other radical SAM enzymes, we hypothesize that viperin inactivates FPPS by covalent modification, e.g. peptide-backbone cleavage, leading to its degradation. The project's goals are to determine the mechanism by which viperin inhibits FPPS, and then to extend these studies to other enzyme targets to establish whether viperin inhibits its targets by a common mechanism. The research will take a two-pronged approach that will combine studies on purified enzymes in vitro with studies on immuno-tagged enzymes transfected in mammalian cell lines. In vivo studies aim to evaluate the regulation of FPPS activity by viperin under physiological conditions. Targeted proteomics approaches will be used to identify other potential targets of viperin and to detect potential covalent modifications of FPPS by viperin in vivo. Targeted metabolomics approaches will be used to search for the products of radical SAM chemistry in vivo and to examine the perturbation of metabolites levels in the mevalonate pathway arising from inhibition of FPPS. In vitro studies will focus on determining in detail the mechanism by which viperin harnesses radical SAM chemistry to inactivate FPPS. Informed by the results of experiments on FPPS, the studies will be extended to examine the interaction of viperin with other target enzymes, including the mitochondrial trifunctional protein, which is involved in the catabolism of fatty acids by the ß-oxidation pathway.
描述(申请人提供):真核细胞已经发展出复杂的防御系统,旨在限制病毒复制,从而防止感染升级到其他细胞。在许多干扰素刺激的基因中,其在抗病毒反应中表达上调的是Viperin(病毒抑制蛋白;内质网相关,干扰素诱导),它已被证明限制了一些重要的人类病毒的传染性,包括甲型流感、艾滋病毒和丙型肝炎。自由基SAM化学参与哺乳动物的抗病毒反应是完全意想不到的,因为到目前为止研究的自由基SAM酶几乎只涉及微生物代谢。在哺乳动物细胞中的研究表明,许多蛋白质,包括细胞和病毒,都是毒蛇毒素的靶标。然而,这些相互作用都没有被直接表征,毒蛇毒素抑制其靶标酶的机制(S),包括自由基SAM化学在反应中的作用,仍然不清楚。我们建议研究毒蛇毒素与法尼基焦磷酸合成酶(FPPS)的相互作用,法尼基焦磷酸合成酶是甲氧丙酸生物合成途径中的一个关键酶,也是毒蛇毒素最典型的靶标。根据我们的初步数据和其他自由基SAM酶催化的蛋白质修饰的充分记录,我们假设毒蛇毒素通过共价修饰(例如肽骨架裂解)使FP PS失活,从而导致其降解。该项目的目标是确定毒蛇毒素抑制FPPS的机制,然后将这些研究扩展到其他酶靶标,以确定毒蛇毒素是否通过共同的机制抑制其靶标。这项研究将采取双管齐下的方法,将体外纯化酶的研究与转基因哺乳动物细胞系的免疫标记酶的研究结合起来。体内研究旨在评价蛇毒在生理条件下对FPPS活性的调节作用。靶向蛋白质组学方法将被用来确定毒蛇毒素的其他潜在靶点,并在体内检测毒蛇毒素对FP PS的潜在共价修饰。靶向代谢组学方法将被用来在体内寻找自由基SAM化学的产物,并检测由于抑制FPPS而引起的甲羟戊酸途径中代谢物水平的扰动。体外研究将集中于详细确定毒蛇毒素利用自由基SAM化学来灭活FPPS的机制。根据在FPPS上的实验结果,这些研究将扩展到研究毒蛇毒素与其他靶标酶的相互作用,包括线粒体三功能蛋白,它参与了脂肪酸的氧化分解代谢。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
E NEIL MARSH其他文献
E NEIL MARSH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('E NEIL MARSH', 18)}}的其他基金
Mechanisms of Enzyme Regulation by Viperin in the Cellular Antiviral Response
Viperin 在细胞抗病毒反应中的酶调节机制
- 批准号:
10364230 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Mechanisms of Enzyme Regulation by Viperin in the Cellular Antiviral Response - Equipment Supplement
Viperin 在细胞抗病毒反应中的酶调节机制 - 设备补充
- 批准号:
10797135 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Understanding hydrogen atom transfer reactions in enzymes
了解酶中的氢原子转移反应
- 批准号:
7863509 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Understanding hydrogen atom transfer reactions in enzymes
了解酶中的氢原子转移反应
- 批准号:
8213480 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Understanding hydrogen atom transfer reactions in enzymes
了解酶中的氢原子转移反应
- 批准号:
8053287 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Mechanisms of Enzyme Regulation by Viperin in the Cellular Antiviral Response - Diversity Supplement
Viperin 在细胞抗病毒反应中的酶调节机制 - Diversity Supplement
- 批准号:
10794800 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Understanding hydrogen atom transfer reactions in enzymes
了解酶中的氢原子转移反应
- 批准号:
8266647 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Understanding hydrogen atom transfer reactions in enzymes
了解酶中的氢原子转移反应
- 批准号:
8423809 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
HOW DO ENZYMES GENERATE AND CONTROL FREE RADICALS
酶如何产生和控制自由基
- 批准号:
6386451 - 财政年份:1999
- 资助金额:
$ 29.28万 - 项目类别:
HOW DO ENZYMES GENERATE AND CONTROL FREE RADICALS
酶如何产生和控制自由基
- 批准号:
2828013 - 财政年份:1999
- 资助金额:
$ 29.28万 - 项目类别:
相似海外基金
Neurotoxicity of deoxyadenosine and neuroprotective effects of adenosine deaminase
脱氧腺苷的神经毒性和腺苷脱氨酶的神经保护作用
- 批准号:
16K08923 - 财政年份:2016
- 资助金额:
$ 29.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and characterization of methyl-deoxyadenosine in the eukaryotic genome.
真核基因组中甲基脱氧腺苷的鉴定和表征。
- 批准号:
BB/M022994/1 - 财政年份:2015
- 资助金额:
$ 29.28万 - 项目类别:
Research Grant
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178061 - 财政年份:1986
- 资助金额:
$ 29.28万 - 项目类别:
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178065 - 财政年份:1986
- 资助金额:
$ 29.28万 - 项目类别:
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178066 - 财政年份:1986
- 资助金额:
$ 29.28万 - 项目类别:
MOLECULAR CLONING OF BACTERIAL DEOXYCYTIDINE/DEOXYADENOSINE KINASE
细菌脱氧胞苷/脱氧腺苷激酶的分子克隆
- 批准号:
3935271 - 财政年份:
- 资助金额:
$ 29.28万 - 项目类别:
MOLECULAR CLONING OF BACTERIAL DEOXYCYTIDINE/DEOXYADENOSINE KINASE
细菌脱氧胞苷/脱氧腺苷激酶的分子克隆
- 批准号:
3914170 - 财政年份:
- 资助金额:
$ 29.28万 - 项目类别:














{{item.name}}会员




