Predicting Patient Instability Noninvasively for Nursing Care (PPINNC)

以无创方式预测患者不稳定的护理 (PPINNC)

基本信息

  • 批准号:
    8690624
  • 负责人:
  • 金额:
    $ 41.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-27 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Patients on step-down units (SDU) undergo continuous noninvasive vital sign (VS) monitoring to facilitate nurse detection of cardiorespiratory instability (CRI), yet our data show nurses do not quickly detect CRI onset nor seek help early 80% of the time even when individual VS monitors are alarming. We recently demonstrated that by using a complexity modeling-based algorithm we could improve detection of CRI. This proposal seeks to further apply complexity modeling-based algorithms to predict CRI prior to overt instability with sufficient lead-time and accuracy to support a nursing decision for preemptive therapy. Clinical decisional support systems (CDSS) continuously process complex data from disparate sources and apply predictive algorithms to alert clinicians early to impending events. One data-driven CDSS approach uses an artificial intelligence type called "machine learning" to evaluate moving-time series data and learn data patterns leading to an event. However, applying CDSS to predict CRI events has been limited by lack of suitably detailed datasets for learning support. We recently demonstrated that artificial neural network (ANN) machine learning of static VS data detected CRI up to 9.5 min before any continuously monitored VS alarmed. By applying machine learning to evaluate high-frequency VS data over longer moving time blocks and including demographic and clinical data a more sensitive and specific CRI prediction with longer lead-times will emerge. We propose to: 1) assemble a complex multidimensional dataset from our existing data sources to serve as the learning platform, 2) develop and validate machine-learned models for dynamic CRI prediction in SDU patients, and test which models are most effective relative to predictive ability, model parsimony and lead-time to event, and 3) use these findings to develop a prototype CRI prediction CDSS tool for nurses. Our demonstrated ability to assemble large high-frequency datasets with defined CRI events from which machine learning occurs makes our team (nursing, medicine, mathematics, computational biology, engineering, statistics) uniquely qualified to conduct this work. Study findings can foster a shift in CRI care from a reactive to preemptive nursing approach. Developing a sensitive, specific, parsimonious and clinically practical means to predict patient instability has important implications for reducing preventable morbidity and mortality, improving patient safety, nursing care (monitoring frequency, case load and mixture, staff allocation) and care delivery systems (triage, bed allocation, prevention of adverse events).
描述(由申请人提供):降压病房(SDU)的患者接受连续的无创生命体征(VS)监测,以促进护士发现心肺不稳定(CRI),然而我们的数据显示,即使个别VS监测仪发出警报,护士也没有迅速发现CRI发作,也没有在80%的情况下早期寻求帮助。我们最近证明,通过使用基于复杂性建模的算法,我们可以提高对CRI的检测。本提案旨在进一步应用基于复杂性建模的算法,在明显不稳定之前预测CRI,并具有足够的前置时间和准确性,以支持护理决策

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARILYN HRAVNAK其他文献

MARILYN HRAVNAK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARILYN HRAVNAK', 18)}}的其他基金

Predicting Patient Instability Noninvasively for Nursing Care (PPINNC)
以无创方式预测患者不稳定的护理 (PPINNC)
  • 批准号:
    8417402
  • 财政年份:
    2012
  • 资助金额:
    $ 41.35万
  • 项目类别:
Predicting Patient Instability Noninvasively for Nursing Care-Two (PPINNC-2)
无创预测患者不稳定的护理-二 (PPINNC-2)
  • 批准号:
    9103405
  • 财政年份:
    2012
  • 资助金额:
    $ 41.35万
  • 项目类别:
Predicting Patient Instability Noninvasively for Nursing Care (PPINNC)
以无创方式预测患者不稳定的护理 (PPINNC)
  • 批准号:
    8554375
  • 财政年份:
    2012
  • 资助金额:
    $ 41.35万
  • 项目类别:
EFFECT RACE/ECONOMIC STUS CARD RISK FCTRS HLTHCR ASSESS HC UTIL POST SURG
影响种族/经济 STUS 卡风险 FCTRS HLTHCR 评估 HC UTIL 后 SURG
  • 批准号:
    7201103
  • 财政年份:
    2005
  • 资助金额:
    $ 41.35万
  • 项目类别:
Racial Disparities in Health Outcomes Following CABG
冠状动脉搭桥术后健康结果的种族差异
  • 批准号:
    6795412
  • 财政年份:
    2003
  • 资助金额:
    $ 41.35万
  • 项目类别:
Racial Disparities in Health Outcomes Following CABG
冠状动脉搭桥术后健康结果的种族差异
  • 批准号:
    6676110
  • 财政年份:
    2003
  • 资助金额:
    $ 41.35万
  • 项目类别:
Racial Disparities in Health Outcomes Following CABG
冠状动脉搭桥术后健康结果的种族差异
  • 批准号:
    6936624
  • 财政年份:
    2003
  • 资助金额:
    $ 41.35万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了