Molecular Mechanisms of Rapamycin's effects on Health and longevity.
雷帕霉素对健康和长寿影响的分子机制。
基本信息
- 批准号:8852520
- 负责人:
- 金额:$ 40.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAdverse effectsAffectAgingAnimalsBiogenesisBrainCaloric RestrictionCellsComplexCultured CellsDataDeteriorationDevelopmentDiabetes MellitusDiseaseDrug Metabolic DetoxicationFemaleFoodGenderGenerationsGrowthHealthHealth PromotionHepaticHomologous GeneHumanIRS2 geneImmunosuppressionIn VitroIndividualInsulinInsulin ResistanceInterventionKnockout MiceLeadLifeLightLiverLongevityLower OrganismMammalsMeasuresMediatingMetabolismMetforminMitochondriaMolecularMusNeuronsOrganellesPharmaceutical PreparationsPhosphotransferasesPhysiologyProductionProtein BiosynthesisReactive Oxygen SpeciesResveratrolRibosomal Protein S6 KinaseRiskRisk FactorsSafetyScienceSignal TransductionSignaling MoleculeSirolimusSocietiesSourceStressTestingTherapeuticTimeTissuesWorkage relatedanti agingcardiovascular disorder riskcardiovascular risk factorcombatdesigndetection of nutrientdrug efficacygraspimprovedin vivoinsightinsulin sensitivityinsulin signalingmTOR proteinmaleneuron lossneurotensin mimic 1new therapeutic targetpreventresearch studyrespiratory
项目摘要
DESCRIPTION (provided by applicant): Rapamycin is the only compound that has been unambiguously shown to extend the maximum lifespan of mice. Unfortunately, side effects including immunosuppression and the elevation of cardiovascular risk factors are likely to limit the utility of the drug in humans. Therefore, there is a great need and opportunity to understand how rapamycin works - both for the development of safe and effective therapeutics, and to gain insight into the basic mechanisms of aging itself. The canonical target of rapamycin is mTORC1, a nutrient sensing kinase whose homolog has been implicated in the extension of lifespan by caloric restriction (CR) in lower organisms. In mice, ablation of the mTORC1 target S6 kinase 1 (S6K1) mimics salient features of CR, including increases in insulin sensitivity, mitochondrial biogenesis, and lifespan. Therefore, it has been postulated that rapamycin mimics CR by inhibiting the mTORC1/S6K1 axis in mammals. In sharp contrast to CR, however, rapamycin actually causes insulin resistance and, at least in cells, inhibits oth the production and activity of mitochondria. These are surprising and potentially very important observations, given that both insulin sensitization and increased mitochondrial biogenesis have been suggested to contribute to CR-induced longevity. We recently showed that rapamycin-induced insulin resistance is the result of inhibiting a second target, mTORC2, and moreover, that specific inhibition of mTORC1 extends lifespan without detrimental effects on insulin signaling. Next, we plan to test whether the inhibition of mitochondrial biogenesi and activity that is observed in cells also occurs in vivo. If so, rapamycin will allow us to proide the first clear demonstration that mitochondrial biogenesis can be uncoupled from longevity. In a second line of experiments, we will treat S6K1 knockout mice with rapamycin to test the hypothesis that S6K1-independent mechanisms contribute to its effects on longevity. There are a number of reasons for believing that this will be the case. S6K1 ablation produces very different changes in physiology and does not extend life in males, whereas rapamycin does. Moreover, the mTORC2 homolog regulates longevity in worms, and our demonstration that rapamycin disrupts mTORC2 in mice therefore provides a candidate mechanism for S6K1-independent effects. Finally, we will explore the tissue-specific consequences of mTORC2 disruption. Loss of mTORC2 in the liver appears to mediate detrimental effects of rapamycin on insulin sensitivity, and ameliorating these effects could lead to complementary approaches to improve the safety and efficacy of the drug. On the other hand, loss of another insulin signaling molecule, IRS2, in the brain has previously been shown to extend life, and loss of neuronal mTORC2 might therefore contribute to the beneficial effect of rapamycin on lifespan. Elucidating the mechanisms by which rapamycin is able to prevent or slow progression of age-related diseases and extend the maximum survival time in mice will offer important insights, and likely new therapeutic targets, in the effort to promote healthy human aging.
描述(由申请人提供):雷帕霉素是唯一明确证明可以延长小鼠寿命的唯一化合物。 不幸的是,包括免疫抑制和心血管危险因素升高在内的副作用可能会限制人类药物的效用。 因此,有很大的需求和机会来了解雷帕霉素的工作原理 - 既是为了开发安全有效的治疗剂,又要深入了解衰老本身的基本机制。雷帕霉素的规范靶标是MTORC1,它是一种营养感应激酶,其同源物已与低生物体中热量限制(CR)延长寿命。 在小鼠中,MTORC1靶标S6激酶1(S6K1)CR的显着特征的消融,包括胰岛素敏感性的提高,线粒体生物发生和寿命。 因此,已经假定雷帕霉素通过抑制哺乳动物中的mTORC1/s6k1轴来模仿Cr。 然而,与CR形成鲜明对比,雷帕霉素实际上会引起胰岛素抵抗,至少在细胞中抑制了线粒体的产生和活性。 考虑到胰岛素敏化和线粒体生物发生的增加,这些观察结果令人惊讶且可能非常重要,这是有助于CR诱导的寿命的。 我们最近表明,雷帕霉素诱导的胰岛素抵抗是抑制第二个靶标MTORC2的结果,此外,MTORC1的特定抑制会延长寿命,而不会对胰岛素信号传导产生不利影响。 接下来,我们计划测试在细胞中观察到的线粒体生物基因的抑制和活性也发生在体内。 如果是这样,雷帕霉素将使我们能够首次明确的证明线粒体生物发生可以与寿命脱在一起。 在第二行实验中,我们将用雷帕霉素处理S6K1基因敲除小鼠,以检验以下假设:S6K1无关机制有助于其对寿命的影响。 有很多原因认为情况。 S6K1消融在生理学上产生截然不同的变化,并且不会延长雄性的生命,而雷帕霉素则可以。 此外,MTORC2同源物调节蠕虫中的寿命,我们的证明是雷帕霉素破坏小鼠中的MTORC2,为S6K1无关效应提供了一种候选机制。 最后,我们将探索MTORC2破坏的组织特异性后果。 肝脏中MTORC2的丧失似乎介导了雷帕霉素对胰岛素敏感性的有害作用,并改善这些作用可能会导致互补的方法来提高药物的安全性和功效。 另一方面,以前已显示出大脑中另一个胰岛素信号分子IRS2的丧失可以延长寿命,因此神经元MTORC2的丧失可能有助于雷帕霉素对寿命的有益作用。 阐明雷帕霉素能够预防或减慢与年龄相关疾病的进展并延长小鼠的最大生存时间的机制将提供重要的见解,并可能提供新的治疗靶标,以促进健康的人类衰老。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph A. Baur其他文献
Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium
- DOI:
10.1016/j.ijcard.2012.09.027 - 发表时间:
2013-06-05 - 期刊:
- 影响因子:
- 作者:
Beamon Agarwal;Matthew J. Campen;Meghan M. Channell;Sarah J. Wherry;Behzad Varamini;James G. Davis;Joseph A. Baur;James M. Smoliga - 通讯作者:
James M. Smoliga
Reducing NAD(H) to amplify rhythms
减少 NAD(H) 以增强节律
- DOI:
10.1038/s42255-021-00494-5 - 发表时间:
2021 - 期刊:
- 影响因子:20.8
- 作者:
K. Chellappa;Joseph A. Baur - 通讯作者:
Joseph A. Baur
Swine Models for NAD + Supplementation in Heart Failure
补充 NAD 治疗心力衰竭的猪模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Joseph A. Baur - 通讯作者:
Joseph A. Baur
Joseph A. Baur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph A. Baur', 18)}}的其他基金
Mechanisms and therapeutic potential of blocking the mitochondrial Mg2+ channel Mrs2 in obesity and NAFLD
阻断线粒体 Mg2 通道 Mrs2 在肥胖和 NAFLD 中的机制和治疗潜力
- 批准号:
10679847 - 财政年份:2023
- 资助金额:
$ 40.57万 - 项目类别:
HTS to identify compounds that increase NAD+ levels in neurons and muscle cells
HTS 鉴定可增加神经元和肌肉细胞中 NAD 水平的化合物
- 批准号:
10665088 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Understanding the roles of cardiac NAD pools and therapeutic effects of precursor supplements in heart failure
了解心脏 NAD 池的作用以及前体补充剂对心力衰竭的治疗作用
- 批准号:
10539858 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Understanding the roles of cardiac NAD pools and therapeutic effects of precursor supplements in heart failure
了解心脏 NAD 池的作用以及前体补充剂对心力衰竭的治疗作用
- 批准号:
10680576 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
HTS to identify compounds that increase NAD+ levels in neurons and muscle cells
HTS 鉴定可增加神经元和肌肉细胞中 NAD 水平的化合物
- 批准号:
10618481 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Mechanisms underlying the genetic association between PPP1R3B and Alzheimer's Disease
PPP1R3B 与阿尔茨海默病之间遗传关联的潜在机制
- 批准号:
10288770 - 财政年份:2018
- 资助金额:
$ 40.57万 - 项目类别:
Molecular mechanisms underlying the genetic association between PPP1R3B and hepatic steatosis
PPP1R3B与肝脂肪变性遗传关联的分子机制
- 批准号:
10224175 - 财政年份:2018
- 资助金额:
$ 40.57万 - 项目类别:
Targeting NAD Metabolism to Improve Glucose Homeostasis in Obesity and Aging
靶向 NAD 代谢以改善肥胖和衰老过程中的血糖稳态
- 批准号:
10288703 - 财政年份:2013
- 资助金额:
$ 40.57万 - 项目类别:
Targeting NAD Metabolism to Improve Glucose Homeostasis in Obesity and Aging
靶向 NAD 代谢以改善肥胖和衰老过程中的血糖稳态
- 批准号:
8596305 - 财政年份:2013
- 资助金额:
$ 40.57万 - 项目类别:
Targeting NAD Metabolism to Improve Glucose Homeostasis in Obesity and Aging
靶向 NAD 代谢以改善肥胖和衰老过程中的血糖稳态
- 批准号:
8731882 - 财政年份:2013
- 资助金额:
$ 40.57万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Sensory Mechanisms of Cadmium-Induced Behavioral Disorders Across Generations
镉引起的几代人行为障碍的感觉机制
- 批准号:
10747559 - 财政年份:2023
- 资助金额:
$ 40.57万 - 项目类别:
FGF21 as a mediator of RPE mitochondrial dysfunction
FGF21 作为 RPE 线粒体功能障碍的介质
- 批准号:
10586472 - 财政年份:2023
- 资助金额:
$ 40.57万 - 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
- 批准号:
10828478 - 财政年份:2023
- 资助金额:
$ 40.57万 - 项目类别:
Evaluation of peripheral nerve stimulation as an alternative to radiofrequency ablation for facet joint pain
周围神经刺激替代射频消融治疗小关节疼痛的评估
- 批准号:
10734693 - 财政年份:2023
- 资助金额:
$ 40.57万 - 项目类别:
Development and Preclinical Evaluation of Nanoformulations in Liver Fibrotic Mice
肝纤维化小鼠纳米制剂的开发和临床前评价
- 批准号:
10639037 - 财政年份:2023
- 资助金额:
$ 40.57万 - 项目类别: