A Computational Biology Approach to Mapping Nucleosomes in Stem Cells

绘制干细胞核小体图谱的计算生物学方法

基本信息

  • 批准号:
    8698104
  • 负责人:
  • 金额:
    $ 29.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-15 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Multiple levels of epigenetic regulation are essential to maintain the pluripotent state of embryonic stem (ES) cells. Histone modification and DNA methylation have been shown to control the stemness of ES cells. Despite the importance of nucleosome positioning in epigenetic regulation, whether and how nucleosomes regulates stem cell functions remains poorly defined, in part due to technical obstacles to obtain high-resolution nucleosome maps in higher organisms. Recently we obtained a yeast nucleosome map at base-pair resolution by combining a novel chemical mapping approach and a Bayesian deconvolution algorithm. This current project seeks to extend this new approach to map nucleosomes for the mouse genome. Using ES cells expressing an engineered histone H4, our preliminary results have demonstrated the feasibility of constructing high-resolution nucleosome maps for higher organisms. The chemical mapping requires introducing a unique cysteine into histone H4 at position 47 to covalently attach a sulfhydryl-reactive copper-chelating label. This procedure is complicated by existence of multiple copies of histone H4 genes in the mouse genome. Thus our first aim is to develop a chemical mapping protocol, and carry out genome-wide chemical mapping in cultured mammalian cells. To define the center positions of nucleosomes based on chemical data requires deconvolution of cleavage signals from locally overlapping nucleosomes. The Bayesian algorithm we developed previously for yeast is computationally inefficient for the mouse data. Thus our second aim is to develop a more efficient computing algorithm and software tools. With above aims achieved, we will generate chemical maps of nucleosomes for both pluripotent ES cells and differentiated fibroblast cells, and quantify the gene expression in parallel by RNA-seq experiments. We will perform high-resolution analysis on global features of nucleosome positioning for the mouse genome, and investigate how nucleosomes regulate gene expression in coordination with other epi-regulators. Lastly, using chemical nucleosome maps we aim to determine the impact of the repressive chromatin mark H3K27me3 on nucleosome positioning throughout the genome. Taken together, the proposed work will delineate the nucleosome landscape of embryonic stem cells in unprecedented details and accuracy, providing insight into a new aspect of epigenetic regulation of the pluripotent cellular state.
描述(由申请人提供): 多水平的表观遗传调控对维持胚胎干细胞的多能性状态至关重要。组蛋白修饰和DNA甲基化已被证明控制ES细胞的干细胞性。尽管核小体定位在表观遗传调控中的重要性,但核小体是否以及如何调控干细胞功能仍然定义不清,部分原因是在高等生物中获得高分辨率核小体图谱的技术障碍。最近,我们通过结合一种新的化学作图方法和贝叶斯去卷积算法,获得了一个碱基对分辨率的酵母核小体图谱。目前的项目旨在扩展这种新方法,以绘制小鼠基因组的核小体。使用表达工程组蛋白H4的ES细胞,我们的初步结果证明了构建高等生物高分辨率核小体图谱的可行性。化学作图需要在组蛋白H4的47位引入独特的半胱氨酸,以共价连接巯基反应性铜螯合标记。由于小鼠基因组中存在多个组蛋白H4基因拷贝,该过程变得复杂。因此,我们的第一个目标是开发一种化学作图方案,并在培养的哺乳动物细胞中进行全基因组化学作图。为了基于化学数据确定核小体的中心位置,需要对来自局部重叠核小体的切割信号进行解卷积。我们以前为酵母开发的贝叶斯算法对小鼠数据的计算效率很低。因此,我们的第二个目标是开发一个更有效的计算算法和软件工具。在实现上述目标的基础上,我们将为多能ES细胞和分化的成纤维细胞生成核小体的化学图谱,并通过RNA-seq实验平行定量基因表达。我们将对小鼠基因组的核小体定位的全局特征进行高分辨率分析,并研究核小体如何与其他表观调节因子协调调节基因表达。最后,使用化学核小体图谱,我们的目标是确定抑制性染色质标记H3 K27 me 3对整个基因组核小体定位的影响。总而言之,拟议的工作将以前所未有的细节和准确性描绘胚胎干细胞的核小体景观,为多能细胞状态的表观遗传调控提供新的方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JI-PING WANG其他文献

JI-PING WANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JI-PING WANG', 18)}}的其他基金

A Computational Biology Approach to Mapping Nucleosomes in Stem Cells
绘制干细胞核小体图谱的计算生物学方法
  • 批准号:
    8838192
  • 财政年份:
    2014
  • 资助金额:
    $ 29.36万
  • 项目类别:
Mathematical and Statistical Models for Nucleosome
核小体的数学和统计模型
  • 批准号:
    8063238
  • 财政年份:
    2010
  • 资助金额:
    $ 29.36万
  • 项目类别:
Bioinformatics Core
生物信息学核心
  • 批准号:
    7820284
  • 财政年份:
    2009
  • 资助金额:
    $ 29.36万
  • 项目类别:
Mathematical and Statistical Models for Nucleosome
核小体的数学和统计模型
  • 批准号:
    7612028
  • 财政年份:
    2005
  • 资助金额:
    $ 29.36万
  • 项目类别:
Mathematical and Statistical Models for Nucleosome
核小体的数学和统计模型
  • 批准号:
    6985538
  • 财政年份:
    2005
  • 资助金额:
    $ 29.36万
  • 项目类别:
Mathematical and Statistical Models for Nucleosome
核小体的数学和统计模型
  • 批准号:
    7214137
  • 财政年份:
    2005
  • 资助金额:
    $ 29.36万
  • 项目类别:
Mathematical and Statistical Models for Nucleosome...
核小体的数学和统计模型...
  • 批准号:
    7035811
  • 财政年份:
    2005
  • 资助金额:
    $ 29.36万
  • 项目类别:
Mathematical and Statistical Models for Nucleosome
核小体的数学和统计模型
  • 批准号:
    7404492
  • 财政年份:
    2005
  • 资助金额:
    $ 29.36万
  • 项目类别:
Bioinformatics Core
生物信息学核心
  • 批准号:
    8327634
  • 财政年份:
  • 资助金额:
    $ 29.36万
  • 项目类别:
Bioinformatics Core
生物信息学核心
  • 批准号:
    8549147
  • 财政年份:
  • 资助金额:
    $ 29.36万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了