Role of the Bloom syndrome DNA helicase BLM in chromosome maintenance mechanisms

布卢姆综合征 DNA 解旋酶 BLM 在染色体维持机制中的作用

基本信息

  • 批准号:
    8964799
  • 负责人:
  • 金额:
    $ 28.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Defects in many genes with roles in DNA break repair are associated with a striking predisposition to cancer development. One of the most extreme cancer risks is associated with Bloom syndrome (BS) - a chromosome breakage disorder caused by mutations in the RecQ-like DNA helicase BLM. RecQ-like helicases and their role in regulating recombinational DNA repair are conserved from bacteria to humans. Besides BS, defects in RecQ-related genes cause Werner syndrome and Rothmund-Thompson syndrome, which are characterized by accelerated aging and/or increased cancer risk. In addition to BS-associated mutations, 93 missense mutations in the human BLM gene have been reported, but it is unknown which, if any, affect BLM function. It has also been suggested that single nucleotide polymorphisms (SNPs) in introns of BLM that have been associated with higher cancer risk may be linked to coding SNPs in exons of BLM. Using a yeast Sgs1-BLM chimera, we have identified coding SNPs that impair BLM function. They include hypomorphic mutations that define a new class of BLM alleles, not associated with BS, that may increase genome instability, cancer risk and other BS-associated symptoms. One objective of this proposal therefore is to determine the effect of coding SNPs throughout the BLM gene on chromosome stability, DNA break repair and the DNA-damage response, and identify their biochemical defects. In contrast to the helicase core, the >600-residue long N- terminal tails of BLM and the related yeast helicase Sgs1 are disordered and not conserved at the sequence level. They have therefore been refractory to conventional approaches to elucidate their function. It is our hypothesis that the function of the long tails of Sgs1 and BLM arises from structural elements, embedded in disorder, that serve as molecular recognition elements for binding proteins. To test this hypothesis we have designed an approach that combines computational prediction of disorder and interactivity, structure analysis by nuclear magnetic resonance (NMR) spectroscopy, and proline mutagenesis to identify these structural elements and elucidate their importance for BLM and Sgs1 function. Specifically we will (1) use a population- based mutational approach to identify and characterize novel functional motifs in BLM; the ability of BLM variants to rescue high sister-chromatid exchange, double-strand-break-repair defects and hypersensitivity to DNA-damaging agents will be assessed; (2) identify biochemical defects of functionally impaired BLM variants by assessing ATPase, DNA binding, annealing and unwinding activities, and (3) determine disorder-function relationships in the N-terminal tails of Sgs1 and BLM using a combination of (a) NMR to identify regions that are dynamically constrained and may adopt interaction-prone a-helices, (b) proline mutagenesis to disrupt the structural motifs, and (c) functional analysis of novel separation-of-function alleles of SGS1 and BLM in vivo. New insights into function and connectivity of BLM and Sgs1 will elucidate the mechanisms of hyper- recombination and chromosome instability in Bloom syndrome and, generally, in human cancers.
 DESCRIPTION (provided by applicant): Defects in many genes with roles in DNA break repair are associated with a striking predisposition to cancer development. One of the most extreme cancer risks is associated with Bloom syndrome (BS) - a chromosome breakage disorder caused by mutations in the RecQ-like DNA helicase BLM. RecQ-like helicases and their role in regulating recombinational DNA repair are conserved from bacteria to humans. Besides BS, defects in RecQ-related genes cause Werner syndrome and Rothmund-Thompson syndrome, which are characterized by accelerated aging and/or increased cancer risk. In addition to BS-associated mutations, 93 missense mutations in the human BLM gene have been reported, but it is unknown which, if any, affect BLM function. It has also been suggested that single nucleotide polymorphisms (SNPs) in introns of BLM that have been associated with higher cancer risk may be linked to coding SNPs in exons of BLM. Using a yeast Sgs1-BLM chimera, we have identified coding SNPs that impair BLM function. They include hypomorphic mutations that define a new class of BLM alleles, not associated with BS, that may increase genome instability, cancer risk and other BS-associated symptoms. One objective of this proposal therefore is to determine the effect of coding SNPs throughout the BLM gene on chromosome stability, DNA break repair and the DNA-damage response, and identify their biochemical defects. In contrast to the helicase core, the >600-residue long N- terminal tails of BLM and the related yeast helicase Sgs1 are disordered and not conserved at the sequence level. They have therefore been refractory to conventional approaches to elucidate their function. It is our hypothesis that the function of the long tails of Sgs1 and BLM arises from structural elements, embedded in disorder, that serve as molecular recognition elements for binding proteins. To test this hypothesis we have designed an approach that combines computational prediction of disorder and interactivity, structure analysis by nuclear magnetic resonance (NMR) spectroscopy, and proline mutagenesis to identify these structural elements and elucidate their importance for BLM and Sgs1 function. Specifically we will (1) use a population- based mutational approach to identify and characterize novel functional motifs in BLM; the ability of BLM variants to rescue high sister-chromatid exchange, double-strand-break-repair defects and hypersensitivity to DNA-damaging agents will be assessed; (2) identify biochemical defects of functionally impaired BLM variants by assessing ATPase, DNA binding, annealing and unwinding activities, and (3) determine disorder-function relationships in the N-terminal tails of Sgs1 and BLM using a combination of (a) NMR to identify regions that are dynamically constrained and may adopt interaction-prone a-helices, (b) proline mutagenesis to disrupt the structural motifs, and (c) functional analysis of novel separation-of-function alleles of SGS1 and BLM in vivo. New insights into function and connectivity of BLM and Sgs1 will elucidate the mechanisms of hyper- recombination and chromosome instability in Bloom syndrome and, generally, in human cancers.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristina Schmidt其他文献

Kristina Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristina Schmidt', 18)}}的其他基金

Role of Pif1 family DNA helicase Rrm3 in regulating DNA synthesis during replication stress
Pif1家族DNA解旋酶Rrm3在复制应激期间调节DNA合成中的作用
  • 批准号:
    10397011
  • 财政年份:
    2020
  • 资助金额:
    $ 28.8万
  • 项目类别:
Function of the Bloom's syndrome DNA helicase in the maintainance of genome integrity
布卢姆氏综合征 DNA 解旋酶在维持基因组完整性中的功能
  • 批准号:
    10254408
  • 财政年份:
    2020
  • 资助金额:
    $ 28.8万
  • 项目类别:
Function of the Bloom's syndrome DNA helicase in the maintainance of genome integrity
布卢姆氏综合征 DNA 解旋酶在维持基因组完整性中的功能
  • 批准号:
    10388467
  • 财政年份:
    2020
  • 资助金额:
    $ 28.8万
  • 项目类别:
Function of the Bloom's syndrome DNA helicase in the maintainance of genome integrity
布卢姆氏综合征 DNA 解旋酶在维持基因组完整性中的功能
  • 批准号:
    10667579
  • 财政年份:
    2020
  • 资助金额:
    $ 28.8万
  • 项目类别:
Role of Pif1 family DNA helicase Rrm3 in regulating DNA synthesis during replication stress
Pif1家族DNA解旋酶Rrm3在复制应激期间调节DNA合成中的作用
  • 批准号:
    10613908
  • 财政年份:
    2020
  • 资助金额:
    $ 28.8万
  • 项目类别:
Function of the Bloom's syndrome DNA helicase in the maintainance of genome integrity
布卢姆氏综合征 DNA 解旋酶在维持基因组完整性中的功能
  • 批准号:
    10457409
  • 财政年份:
    2020
  • 资助金额:
    $ 28.8万
  • 项目类别:
Suppression of translocations by RecQ-like DNA helicases
RecQ 样 DNA 解旋酶抑制易位
  • 批准号:
    8269737
  • 财政年份:
    2008
  • 资助金额:
    $ 28.8万
  • 项目类别:
Suppression of translocations by RecQ-like DNA helicases
RecQ 样 DNA 解旋酶抑制易位
  • 批准号:
    7468137
  • 财政年份:
    2008
  • 资助金额:
    $ 28.8万
  • 项目类别:
Suppression of translocations by RecQ-like DNA helicases
RecQ 样 DNA 解旋酶抑制易位
  • 批准号:
    8144579
  • 财政年份:
    2008
  • 资助金额:
    $ 28.8万
  • 项目类别:
Suppression of translocations by RecQ-like DNA helicases
RecQ 样 DNA 解旋酶抑制易位
  • 批准号:
    7846143
  • 财政年份:
    2008
  • 资助金额:
    $ 28.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了