Three-Dimensional Image-Guided Development and Optimization of Molecular Regulating Bone Regenerative Scaffolds
三维图像引导分子调控骨再生支架的开发与优化
基本信息
- 批准号:8887845
- 负责人:
- 金额:$ 32.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-10 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcetalsAlgorithmsAnimal ModelArchitectureBehaviorBindingBiocompatible MaterialsBone MarrowBone RegenerationBone TissueCell SurvivalCellsCellular StructuresCephalicCharacteristicsClinical MedicineConfocal MicroscopyCuesDefectDevelopmentFeedbackFluorescenceGrowth FactorHumanHydrogelsImageImage AnalysisImaging TechniquesImaging technologyIn SituInfiltrationInvestigationKnowledgeLaboratoriesLeadLongitudinal StudiesMesenchymal Stem CellsMethodsMicroscopyModalityModelingMolecularMorphologyMotivationNatural regenerationOptical Coherence TomographyOptical TomographyOryctolagus cuniculusOsteogenesisOutcomePenetrationPhenotypePopulationPorosityPrincipal InvestigatorPropertyRegenerative MedicineRegulationResearch PersonnelRoleSignal TransductionStem cellsStromal CellsStructureSurfaceSystemTechniquesThree-Dimensional ImageTimeTissue EngineeringTissue GraftsTissuesWorkbasebonebone morphogenetic protein 2cell behaviorclinically relevantcraniofacialdesignenvironmental chemicalin vivomigrationnoveloptical imagingosteoblast differentiationosteogenicpre-clinicalpublic health relevanceregenerativeresponsescaffoldtissue support frametooltwo-photon
项目摘要
DESCRIPTION (provided by applicant): Three-dimensional (3D) cell-based tissue grafts have been increasingly useful in tissue engineering and regenerative medicine. A critical building block in tissue engineering is the scaffold which can act as the supporting medium to deliver cell populations and induce the ingrowth of vessels and surrounding tissues. Therefore, it is necessary to develop tools to characterize the architecture of the scaffold. In addition, to study cell-scaffold interaction, namely, cell viability, migration, proliferation, and signaling within te scaffold, a non- destructive technique that can quantitatively image 3D cell behavior is required. The emerging multi-modality systems such as the combination of optical coherence tomography (OCT) with fluorescence confocal microscopy (FCM) and two-photon microscopy (TPM) that provide co-registered images of structural and functional properties of scaffolds and cells have had significant impact upon the field. However, both FCM and TPM have limited penetration depths thus precluding their characterization of cells deep inside the scaffolds. Therefore, there is a critical need for developing new methods that can analyze the engineered tissue structure in a non-destructive manner and with the ability to image deeper than microscopy. We propose a new platform of OCT and fluorescence laminar optical tomography (FLOT) for characterization cell-scaffold interaction. Two key findings from our lab provide the major motivation for this work: 1) We have demonstrated that OCT can image macroporous scaffolds and quantify their structural parameters including pore sizes, porosity, and interconnectivity; and the co-registered FCM can quantitatively describe cell composition on the scaffold surface. 2) We have developed a combined OCT and FLOT system for depth-resolved imaging of tissue morphology and molecular information in vivo up to 1-2 mm deep. The combined use of OCT and FLOT is a promising approach to characterize both structural and cellular information simultaneously to investigate cell-scaffold interaction, which enables longitudinal studies of cell viability, migraton, proliferation, and differentiation temporally as well as spatially within the scaffolds. We hypothesize that OCT and FLOT will enable 3D description of a scaffold's structure and cellular/molecular distribution, therefore elucidating cellular interactions within scaffolds. We propose to achieve our objective through three specific aims: 1) Establish the Capability of OCT/FLOT on Imaging Morphological and Functional Parameters in Engineered Tissues. 2) Image Stem-Cell-Laden Tissue Scaffolds and Correlate with Bone Formation In Vivo. 3) Prospectively Validate the Hypothesis that OCT/FLOT Imaging Can Predict Regenerative Outcomes. This project will result in a new non-destructive imaging technology for quantitative characterization of cell-scaffold interactions, which is essential to enable optimized design and materials of tissue engineering scaffolds, cell-seeding methods, and chemical/environmental cues. These studies will define a novel path towards advancing bone tissue engineering.
描述(由申请人提供):基于三维(3D)细胞的组织移植物在组织工程和再生医学中越来越有用。组织工程中的一个关键组成部分是支架,它可以作为支持介质来输送细胞群并诱导血管和周围组织的向内生长。因此,有必要开发工具来表征脚手架的架构。此外,为了研究细胞-支架相互作用,即支架内的细胞活力、迁移、增殖和信号传导,需要一种能够定量成像 3D 细胞行为的非破坏性技术。新兴的多模态系统,例如光学相干断层扫描(OCT)与荧光共焦显微镜(FCM)和双光子显微镜(TPM)的组合,可提供支架和细胞的结构和功能特性的共同配准图像,对该领域产生了重大影响。然而,FCM 和 TPM 的穿透深度都有限,因此无法表征支架深处的细胞。因此,迫切需要开发新方法,以非破坏性方式分析工程组织结构,并具有比显微镜更深的成像能力。我们提出了一个新的 OCT 和荧光层流光学断层扫描 (FLOT) 平台,用于表征细胞-支架相互作用。我们实验室的两个关键发现为这项工作提供了主要动力:1)我们已经证明 OCT 可以对大孔支架进行成像并量化其结构参数,包括孔径、孔隙率和互连性;联合注册的FCM可以定量描述支架表面的细胞组成。 2) 我们开发了一种组合的 OCT 和 FLOT 系统,用于对体内深度可达 1-2 毫米的组织形态和分子信息进行深度分辨成像。 OCT 和 FLOT 的结合使用是一种很有前途的方法,可以同时表征结构和细胞信息以研究细胞-支架相互作用,从而能够对支架内的细胞活力、迁移、增殖和分化进行时间和空间的纵向研究。我们假设 OCT 和 FLOT 将能够对支架结构和细胞/分子分布进行 3D 描述,从而阐明支架内的细胞相互作用。我们建议通过三个具体目标来实现我们的目标:1)建立 OCT/FLOT 对工程组织形态和功能参数进行成像的能力。 2) 对充满干细胞的组织支架进行成像并与体内骨形成相关。 3) 前瞻性验证 OCT/FLOT 成像可以预测再生结果的假设。该项目将产生一种新的无损成像技术,用于定量表征细胞-支架相互作用,这对于实现组织工程支架的优化设计和材料、细胞接种方法和化学/环境线索至关重要。这些研究将为推进骨组织工程开辟一条新的道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Chen其他文献
Yu Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Chen', 18)}}的其他基金
Defining the role of histone H3K4 mono-methyltransferase dysfunction in urothelial carcinoma
定义组蛋白 H3K4 单甲基转移酶功能障碍在尿路上皮癌中的作用
- 批准号:
10522552 - 财政年份:2022
- 资助金额:
$ 32.07万 - 项目类别:
Automatic Wide-Field Optical Coherence Tomography for Assessment of Transplant Kidney Viability
用于评估移植肾活力的自动广域光学相干断层扫描
- 批准号:
10501992 - 财政年份:2022
- 资助金额:
$ 32.07万 - 项目类别:
Evolution and inhibition of carbapenemase in beta-lactam resistance
β-内酰胺耐药中碳青霉烯酶的进化和抑制
- 批准号:
10598501 - 财政年份:2021
- 资助金额:
$ 32.07万 - 项目类别:
Evolution and inhibition of carbapenemase in beta-lactam resistance
β-内酰胺耐药中碳青霉烯酶的进化和抑制
- 批准号:
10385772 - 财政年份:2021
- 资助金额:
$ 32.07万 - 项目类别:
Patient-Derived Models of Prostate Cancer for Personalized Medicine
用于个体化医疗的前列腺癌患者衍生模型
- 批准号:
10472536 - 财政年份:2019
- 资助金额:
$ 32.07万 - 项目类别:
Patient-Derived Models of Prostate Cancer for Personalized Medicine
用于个体化医疗的前列腺癌患者衍生模型
- 批准号:
10219178 - 财政年份:2019
- 资助金额:
$ 32.07万 - 项目类别:
Patient-Derived Models of Prostate Cancer for Personalized Medicine
用于个体化医疗的前列腺癌患者衍生模型
- 批准号:
10683753 - 财政年份:2019
- 资助金额:
$ 32.07万 - 项目类别:
Understanding the role of an aberrant hepatic nuclear transcription circuit in prostate cancer tumorigenesis and castration resistance
了解异常肝核转录回路在前列腺癌肿瘤发生和去势抵抗中的作用
- 批准号:
10224110 - 财政年份:2017
- 资助金额:
$ 32.07万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 32.07万 - 项目类别:
Continuing Grant