CRCNS: Neurophysiological Basis of Brain Connectivity
CRCNS:大脑连接的神经生理学基础
基本信息
- 批准号:8902101
- 负责人:
- 金额:$ 12.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAnesthesia proceduresAnimal ModelAnimalsBase of the BrainBasic ScienceBehavioralBlood flowBody TemperatureBrainBrain NeoplasmsBrain imagingBrain regionBudgetsClinicalCommunitiesComplementComplexComputer AnalysisComputer SimulationComputing MethodologiesConsumptionDataData AnalysesData SetDatabasesDevelopmentDiseaseEquipmentEthicsFunctional Magnetic Resonance ImagingGerman populationGermanyGraphHumanImageImage AnalysisIndividualInstitutesInstitutionInvestigationKnowledgeLaboratoriesLinkLiteratureMagnetic Resonance ImagingMapsMeasuresMedical ImagingMetabolicMethodologyMethodsModelingMonitorMotor CortexNatureNervous system structureNetwork-basedNeurodegenerative DisordersNeuronsNeurosciencesNew JerseyOrganParkinson DiseasePatientsPhysiologicalPositioning AttributePositron-Emission TomographyRadiationRattusReportingResearchResearch PersonnelResearch ProposalsRespirationRestScienceScientistSignal TransductionSocietiesSpecificitySystemTechniquesTechnologyTemperatureTheoretical modelTracerTranslationsUniversitiesWorkbasebrain surgeryclinical applicationcomputational neurosciencedata acquisitiondesignglucose metabolismimaging modalityimprovedin vivoindependent component analysisinfancyinsightinterestmathematical modelmultimodalitynervous system disorderneurophysiologynon-invasive imagingnovelprograms
项目摘要
DESCRIPTION (provided by applicant): The brain is the major organ of humans and animals for their interaction with nature. Despite huge research efforts in the field of neurosciences a thorough understanding of the principles and dynamics of the nervous system is still in its infancies. Computational neuroscience is one of the key methodologies for a better understanding of brain function. However, explore and model aspects of brain function and the interplay of neurons and brain regions, as well as to check the validity of models specific boundary conditions evolving from in vivo experimental data and their analysis are needed. A powerful method to gain in vivo functional-metabolic information is non-invasive imaging, specifically represented by the recent advances in combined positron emission tomography and magnetic resonance imaging (PET/MRI), which reveals multiple temporal linked in vivo parameters. Thus, PET/MRI and computational neuroscience complement each other in a perfect way. In this proposal two world leading institutions in the fields of multimodality imaging
(University of Tuebingen) and brain connectivity mapping (New Jersey Institute of Technology, NIJT) join forces to explore so far uncharted terrains of metabolic brain connectivity. Many questions regarding large scale networks in the brain, which are even active during resting conditions, are so far unanswered. Their exact origin, interpretation and also their demand on energy consumption are so far not understood. In the last three years, resting state, functional connectivity (RSFC) functional magnetic resonance imaging (fMRI) often also termed functional connectivity fMRI (fc-fMRI) has seen a tremendous increase in interest in applications ranging from basic brain imaging to clinical applications in brain surgery planning or neurodegenerative disease. fcMRI was first developed by the PI from the USA and colleagues who observed that fluctuations in fMRI signals during behavioral "rest" are temporally correlated within functionally
related cortical networks such as motor cortex but not between functionally unrelated networks. Despite its widespread use of this technology its physiological and metabolic basics are not understood. Recently the PI from Germany and colleagues also found that useful information about brain connectivity appears to be hidden in dynamic as well as static positron emission tomography (PET) data. Combined PET/MR imaging in small animals, offers the ability to investigate these metabolic and neurophysiological basics of brain connectivity. One strength of this technology is that PET and fMRI data can be acquired simultaneously, therefore minimizing confounding factors such as changes in temperature, respiration rate or animal position. However, the wealth of data generated by PET/MRI and their complex origin requests for advanced computational analysis methods, but in turn these data provide a novel input for mathematical models. By using novel data in conjunction with computational models, we propose to take an important step in determining the metabolic basis of brain connectivity. For this we want to acquire so far unique, combined PET/MR data using a variety of PET-tracers investigating glucose metabolism, blood flow, the serotonergic and the dopaminergic system of the rat brain during rest and stimulation. This data will be acquired in combination with fc-fMRI, and will hence allow a direct comparison of fc-PET and fc-fMRI. We will further develop specific computational neuroscience methods for the analysis of fc- PET data, based on independent component analysis (ICA) as well as graph based network measures. Such methods have so far not been presented. Our combined data acquisition and data analysis approach will then be utilized to investigate if fc-PET and fc-fMRI information are redundant or complimentary. We also envision that the quantitative nature of PET data gives novel insights into the energetic budget used by large-scale brain networks. This US-German research proposal has the potential of a tremendous impact on science but also society in general. The novel and unique brain connectivity data might yield detailed insights into brain networks, based on specific transporter systems in the brain - this is of fundamental interest for basic research, neurophysiology but also for computational neuroscientists who aim to implement novel networks in their modeling and theoretical framework. The proposed analysis methods will be useful for medical imaging scientists, since it derives so far unutilized information from PET imaging data. Moreover, also clinicians can apply the developed fc-PET techniques in a variety of neurological diseases ranging from brain tumors to Alzheimer`s or Parkinson disease. It is especially the metabolic basis of these diseases, which can potentially earlier be identified using
fc-PET and fc-fMRI methods developed in this proposal. This would especially in aging societies have a tremendous effect not only on the economical burden of such diseases, but might also due to a better treatment monitoring give new hope to millions of patients. Therefore our project can be seen as the basis of a framework that can be applied to a huge variety of basic research as well as clinical challenges involving fc networks.
描述(由申请人提供):大脑是人类和动物与自然相互作用的主要器官。尽管在神经科学领域进行了巨大的研究努力,但对神经系统的原理和动态的彻底了解仍在其中。计算神经科学是更好地理解大脑功能的关键方法之一。但是,探索和模型的大脑功能以及神经元和大脑区域的相互作用,以及检查模型的特定边界条件的有效性,这些边界条件需要从体内实验数据及其分析。获得体内功能代谢信息的一种强大方法是非侵入性成像,特别是正电子发射断层扫描和磁共振成像(PET/MRI)的最新进展,揭示了多个时间链接的体内参数。因此,PET/MRI和计算神经科学以完美的方式相互补充。在此提案中,多模式成像领域的两个世界领先机构
(Tuebingen大学)和大脑连接映射(NIJT新泽西理工学院)联合起来探索迄今未知的代谢大脑连接性地形。到目前为止,关于大脑中大规模网络甚至在休息条件下都很活跃的许多问题尚未得到解答。到目前为止,他们的确切起源,解释以及对能耗的需求尚不清楚。在过去的三年中,静止状态,功能连通性(RSFC)功能磁共振成像(FMRI)通常也称为功能连通性fMRI(FC-FMRI)的功能连通性(FC-FMRI)已经看到,从基本脑部成像到临床外科手术计划或神经性疾病中的临床应用或神经性疾病的应用的兴趣大大增加。 FCMRI首先是由美国和同事的PI开发
相关的皮质网络,例如运动皮层,但在功能无关的网络之间不进行。尽管广泛使用了这项技术,但尚不清楚其生理和代谢基础知识。最近,来自德国和同事的PI还发现,有关大脑连通性的有用信息似乎隐藏在动态和静态正电子发射断层扫描(PET)数据中。小动物中的PET/MR成像合并,具有研究大脑连通性的这些代谢和神经生理基础知识的能力。该技术的一种优势是可以同时获取PET和功能磁共振成像数据,从而最大程度地减少了混杂因素,例如温度,呼吸率或动物位置的变化。但是,PET/MRI生成的大量数据及其复杂的起源要求对先进的计算分析方法的要求,但这些数据又为数学模型提供了一种新颖的输入。通过将新型数据与计算模型结合使用,我们建议在确定大脑连通性的代谢基础上迈出重要的一步。为此,我们希望使用各种宠物追踪器在静止和刺激过程中使用多种宠物追踪器获取如此独特的宠物/MR数据。该数据将与FC-FMRI结合使用,因此可以直接比较FC-PET和FC-FMRI。我们将基于独立组件分析(ICA)以及基于图的网络测量方法进一步开发特定的计算神经科学方法,以分析FC-PET数据。到目前为止,此类方法尚未提出。然后,我们将使用合并的数据采集和数据分析方法来研究FC-PET和FC-FMRI信息是多余的还是互补的。我们还设想,PET数据的定量性质提供了对大型大脑网络使用的充满活力预算的新见解。这项美国 - 德国研究提案具有对科学的巨大影响,但总体上也具有巨大影响。基于大脑中特定的转运蛋白系统,新颖而独特的大脑连接数据可能会产生对大脑网络的详细见解 - 这对基础研究,神经生理学以及旨在在其建模和理论框架中实现新颖网络的计算神经科学家具有根本性。所提出的分析方法将对医学成像科学家有用,因为它从PET成像数据中得出了未利用的信息。此外,临床医生还可以将开发的FC-PET技术应用于从脑肿瘤到阿尔茨海默氏病或帕金森病的多种神经系统疾病。特别是这些疾病的代谢基础,可以使用
FC-PET和FC-FMRI方法在此提案中开发了。尤其是在衰老社会中,不仅对这种疾病的经济负担产生巨大影响,而且还可能是由于更好的治疗监测给数百万患者带来了新的希望。因此,我们的项目可以视为可以应用于大量基础研究以及涉及FC网络的临床挑战的框架的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bharat Bhusan Biswal其他文献
Bharat Bhusan Biswal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bharat Bhusan Biswal', 18)}}的其他基金
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10391136 - 财政年份:2022
- 资助金额:
$ 12.74万 - 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10548825 - 财政年份:2022
- 资助金额:
$ 12.74万 - 项目类别:
Longitudinal, multimodal analysis of HIV and ART effects on brain metabolism, structure and connectivity in young children
HIV 和 ART 对幼儿大脑代谢、结构和连接性影响的纵向、多模式分析
- 批准号:
9114662 - 财政年份:2015
- 资助金额:
$ 12.74万 - 项目类别:
CRCNS: Neurophysiological Basis of Brain Connectivity
CRCNS:大脑连接的神经生理学基础
- 批准号:
8838312 - 财政年份:2014
- 资助金额:
$ 12.74万 - 项目类别:
Enhancement of the 1000 Functional Connectome Project
1000个功能连接体项目的增强
- 批准号:
8412999 - 财政年份:2012
- 资助金额:
$ 12.74万 - 项目类别:
Enhancement of the 1000 Functional Connectome Project
1000个功能连接体项目的增强
- 批准号:
8241553 - 财政年份:2012
- 资助金额:
$ 12.74万 - 项目类别:
Functional MRI of Aging: Biophysical Characterization
衰老的功能 MRI:生物物理特征
- 批准号:
8494485 - 财政年份:2010
- 资助金额:
$ 12.74万 - 项目类别:
Functional MRI of Aging: Biophysical Characterization
衰老的功能 MRI:生物物理特征
- 批准号:
8304219 - 财政年份:2010
- 资助金额:
$ 12.74万 - 项目类别:
Functional MRI of Aging: Biophysical Characterization
衰老的功能 MRI:生物物理特征
- 批准号:
8097337 - 财政年份:2010
- 资助金额:
$ 12.74万 - 项目类别:
Functional MRI of Aging: Biophysical Characterization
衰老的功能 MRI:生物物理特征
- 批准号:
8726891 - 财政年份:2010
- 资助金额:
$ 12.74万 - 项目类别:
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 12.74万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 12.74万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 12.74万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别: