The Role of the Dendritic Cell NADPH Oxidase During Hypertension
树突状细胞 NADPH 氧化酶在高血压过程中的作用
基本信息
- 批准号:9126144
- 负责人:
- 金额:$ 2.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAdoptive TransferAdultAffectAgeAngiotensin IIAnimalsAntigen-Presenting CellsAntigensAtherosclerosisCatecholaminesCell MaturationCell physiologyCellsCodeDOCADataDendritic CellsDendritic cell activationDevelopmentDinucleoside PhosphatesDiseaseEndothelial CellsEndotheliumEnvironmentEnzymesEssential HypertensionEtiologyFibrosisFlow CytometryHeartHeart failureHormonalHumanHypertensionITGAX geneImmunologicsInflammationInfusion proceduresInjuryKidneyKidney DiseasesLaboratoriesLeadLightLinkLipidsLysineMajor Histocompatibility ComplexMechanicsMentorsMethodologyMolecular BiologyMonitorMorbidity - disease rateMusMyelogenousMyocardial InfarctionNeuraxisNiacinamideOrganOxidasesOxidative StressPhysiologicalPlayPopulationPrevalenceProductionProteinsReactive Oxygen SpeciesResearchRodentRoleSiteSocietiesSodiumSodium ChlorideSourceStretchingStrokeSuperoxidesT-Cell ActivationT-LymphocyteTechniquesTestingTransgenic MiceVascular remodelingWorkadaptive immunityadductbasecadherin 5cell typecytokineexperienceinorganic phosphateinsightketoaldehydekidney vascular structuremacrophagemonocytemortalitynovel therapeuticsoxidationpreventpromoterpublic health relevancerecombinaseresponseskills
项目摘要
DESCRIPTION (provided by applicant): Hypertension is a leading cause of morbidity and mortality and is a key contributor to myocardial infarction, stroke, and heart failure. Oxidative injury and inflammation have been implicated in the genesis of hypertension, but the relationship between these is poorly understood. We have recently shown that isoketal-modified proteins accumulate in dendritic cells (DCs) and promote T cell activation and hypertension. Activated T cells infiltrate the kidney and vasculature and promote renal sodium reabsorption and vascular remodeling and fibrosis. Isoketals, or γ-ketoaldehydes, are lipid oxidation products that rapidly react with lysines, and we have found that these modified proteins seem to act as neoantigens in hypertension. We have also observed these in monocytes of hypertensive humans, and suspect they contribute to human hypertension. Our preliminary data indicate that isoketals are formed by reactive oxygen species (ROS) generated by the NADPH oxidases. In aim 1, I will test the hypothesis that the DC NADPH oxidase is critical for the formation of isoketals, and ultimately for T cell activation and hypertension. To accomplish this, I have developed mice in which p22phox, a critical subunit of all rodent NADPH oxidases, is deleted in myeloid DCs and activated macrophages, by crossing mice in which the coding region of p22phox is flanked by loxP sites (p22phoxloxp/loxp mice) with mice expressing Cre recombinase driven by the CD11c promoter. I will examine the effect of p22phox deletion on the ability of DCs to activate T cells, process and present antigens in both MHC-I and MHC-II. I will also examine the hypertensive response to angiotensin II and DOCA-salt challenge in these animals. In aim 2, I will test the hypothesis that the endothelial cell NADPH oxidase contributes to DC activation and formation of DC isoketal-adducts. This hypothesis is based on the concept that stimulated monocytes become activated DCs upon interaction with the endothelium, and I propose that the endothelium is primed to do this in hypertension. For this aim, I have crossed the p22phoxloxp/loxp mice with mice expressing Cre recombinase driven by an inducible (VE)-cadherin promoter. These animals will allow me to specifically delete p22phox in endothelial cells, and I will then examine how loss of the endothelial cell NADPH oxidase affects the hypertensive response to angiotensin II. I will determine how the endothelial NADPH oxidase modifies DC by conducting adoptive transfer of monocytes from GFP transgenic mice to my transgenic mice. In both aims, I will use flow cytometry to monitor DC maturation and isoketal-adduct content and determine how T cells are activated by examining their proliferation in response to DCs. Completion of these studies will lead to the identification of the main source of ROS that is responsible for the formation of isoketals in DCs that, in turn, promote inflammation and hypertension.
描述(由适用提供):高血压是发病率和死亡率的主要原因,并且是心肌梗塞,中风和心力衰竭的关键原因。氧化损伤和炎症已经在高血压的起源中实施,但是这些之间的关系知之甚少。我们最近表明,异分质改性蛋白在树突状细胞(DC)中积聚并促进T细胞的激活和高血压。活化的T细胞浸润肾脏和脉管系统,并促进肾脏钠的重吸收以及血管重塑和纤维化。异分酶或γ-酮醛是脂质氧化产物,与赖氨酸迅速反应,我们发现这些改良的蛋白质似乎是高血压中的新抗原。我们还在高血压人的单核细胞中观察到这些,并怀疑它们会导致人类高血压。我们的初步数据表明ISOKETAL是由NADPH氧化物产生的活性氧(ROS)形成的。在AIM 1中,我将检验以下假设:DC NADPH氧化物对于Isoketals的形成至关重要,最终对于T细胞激活和高血压至关重要。 To accomplish this, I have developed mice in which p22phox, a critical subunit of all rodent NADPH oxides, is deleted in myeloid DCs and activated macrophages, by crossing mice in which the coding region of p22phox is flanked by loxP sites (p22phoxloxp/loxp mice) with mice expressing Cre recombinase drive by the CD11c promoter.我将研究p22phox缺失对MHC-I和MHC-II中DC激活T细胞,处理和存在抗原的能力的影响。我还将研究这些动物中对血管紧张素II和DOCA盐挑战的高血压反应。在AIM 2中,我将检验以下假设:内皮细胞NADPH氧化酶有助于DC激活和形成DC Isoketal-Adducts。该假设基于以下概念:刺激的单核细胞在与内皮相互作用后会被激活的DC,我建议内皮在高血压中进行此操作。为此,我已经用诱导型(VE) - 钙粘蛋白启动子表达CRE重组酶驱动的小鼠越过P22phoxloxp/Loxp小鼠。这些动物将允许我在这两个目标中都可以使用流式细胞术来监测直流成熟和isoketal-adduct含量,并通过检查其对DC的增殖来确定如何激活T细胞。这些研究的完成将导致鉴定ROS的主要来源,ROS的主要来源是导致DC中Isoketals形成的,从而促进注射和高血压。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roxana Loperena其他文献
Roxana Loperena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于荧光共振能量转移及指示剂置换法策略纳米组装体比率荧光识别三磷酸腺苷
- 批准号:22361028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
S-腺苷同型半胱氨酸抑制METTL3调控m6A/miRNA-NCOA4轴致椎间盘退变的机制研究
- 批准号:82372444
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于肝脏腺苷A1受体调控的PKA-SCAP-SREBP1c通路研究知母皂苷AⅢ治疗NAFLD的分子机理
- 批准号:82374129
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PUF60通过调控SET可变多聚腺苷酸化参与DNA损伤修复促进卵巢癌耐药的机制
- 批准号:82303055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ablating Liver Metastases with SBRT to Enhance Immune Checkpoint Blockade in Melanoma
用 SBRT 消融肝转移以增强黑色素瘤的免疫检查点封锁
- 批准号:
10562707 - 财政年份:2023
- 资助金额:
$ 2.82万 - 项目类别:
A role of DPP4 in T cell trafficking and vascular inflammation
DPP4 在 T 细胞运输和血管炎症中的作用
- 批准号:
9883574 - 财政年份:2020
- 资助金额:
$ 2.82万 - 项目类别: