KnowEng, a Scalable Knowledge Engine for Large-Scale Genomic Data-OVERALL
KnowEng,用于大规模基因组数据的可扩展知识引擎 - 总体
基本信息
- 批准号:9288931
- 负责人:
- 金额:$ 22.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:Actinomyces InfectionsAlgorithmsAntibioticsBacterial GenomeBehavioralBehavioral SciencesBig DataBiologicalBiologyBiomedical ComputingBiomedical ResearchBrainBusinessesClinicClinical ResearchClinical SciencesClinical TrialsCloud ComputingCodeCollaborationsCommunitiesComplexComputational ScienceComputational TechniqueComputer softwareComputing MethodologiesCountryDataData AnalysesData AnalyticsData ScienceData SetData SourcesDatabasesDevelopmentEducational workshopEngineeringEnsureEnvironmentEthicsFosteringFutureGene ExpressionGenerationsGenesGenetic DeterminismGenomeGenomicsGoalsIllinoisImageryInstitutesInternetKnowledgeLeadLearningLegalLinkMachine LearningMetabolic PathwayMethodsMiningModalityMolecular ProfilingOnline SystemsPatternPharmaceutical PreparationsPharmacogenomicsPhysiciansPrivacyPropertyRegulator GenesResearchResearch InfrastructureResearch PersonnelResourcesScienceScientistSocial NetworkStimulusTechniquesTechnologyTestingTimeTrainingUniversitiesWorkanalytical methodbasebig biomedical databiomedical scientistcancer therapyclinical carecollaborative environmentcommunity buildingdata miningdesigndrug discoveryfield studygene interactiongenome sequencinggenome-widegenomic datainnovationknowledge basemalignant breast neoplasmmembermicroorganismmultidisciplinarynext generationnovelphenotypic dataprogramspublic health relevanceresearch and developmentresponsesocialsoftware developmenttranscriptomicsworking group
项目摘要
DESCRIPTION (provided by applicant): The primary goal of the proposed Center of Excellence is to build a powerful and scalable Knowledge Engine for Genomics, KnowEnG. KnowEnG will transform the way biomedical researchers analyze their genome-wide data by integrating multiple analytical methods derived from the most advanced data mining and machine learning research to use the full breadth of existing knowledge about the relationships between genes as background, and providing an intuitive and professionally designed user interface. In order to achieve these goals, the project includes the following components: (1) gathering and integrating existing knowledgebases documenting connections between genes and their functions into a single Knowledge Network; (2) developing computational methods for analyzing genome-wide user datasets in the context of this pre-existing knowledge; (3) implementing these methods into scalable software components that can be deployed in a public or private cloud; (4) designing and implementing a Web-based user interface, based on the HUBZero toolkit, that enables the interactive analysis of user-supplied datasets in a graphics-driven and intuitive fashion; (5) thoroughly testing the functionality and usefulness of the KnowEnG environment in three large scale projects in the clinical sciences (pharmacogenomics of breast cancer), behavioral sciences (identification of gene regulatory modules underlying behavioral patterns) and drug discovery (genome-based prediction of the capacity of microorganisms to synthesize novel biologically active compounds). The KnowEng environment will be deployed in a cloud infrastructure and fully available to the community, as will be the software developed by the Center. The proposed Center is a collaboration between the University of Illinois (UIUC), a recognized world leader in computational science and engineering, and the Mayo Clinic, one of the leading clinical care and research organizations in the worid, and will be based at the UIUC Institute for Genomic Biology, which has state-of-the-art facilities and a nationally recognized program of multidisciplinary team-based genomic research.
描述(由申请人提供):拟议的卓越中心的主要目标是建立一个强大的和可扩展的基因组学知识引擎,KnowEnG。KnowEnG将通过整合来自最先进的数据挖掘和机器学习研究的多种分析方法来改变生物医学研究人员分析其全基因组数据的方式,以使用有关基因之间关系的现有知识作为背景,并提供直观和专业设计的用户界面。为了实现这些目标,该项目包括以下组成部分:(1)收集和整合现有的知识库,记录基因及其功能之间的联系,成为一个单一的知识网络;(2)开发计算方法,在这种预先存在的知识的背景下分析全基因组用户数据集;(3)将这些方法实现为可以部署在公共或私有云中的可扩展软件组件;(4)以HUBZero工具包为基础,设计和实现一个基于网络的用户界面,以图形驱动和直观的方式对用户提供的数据集进行交互式分析;(5)在临床科学(乳腺癌药物基因组学)、行为科学(识别行为模式下的基因调控模块)和药物发现(基于基因组预测微生物合成新型生物活性化合物的能力)的三个大规模项目中彻底测试KnowEnG环境的功能和有用性。KnowEng环境将部署在云基础设施中,并完全可供社区使用,该中心开发的软件也将如此。拟议的中心是伊利诺伊大学(UIUC),一个公认的世界领先的计算科学和工程,和马约诊所,在世界领先的临床护理和研究机构之一,之间的合作,并将设在UIUC基因组生物学研究所,其中有国家的最先进的设施和国家认可的多学科团队为基础的基因组研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JIAWEI HAN其他文献
JIAWEI HAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JIAWEI HAN', 18)}}的其他基金
KnowEng, a Scalable Knowledge Engine for Large-Scale Genomic Data-OVERALL
KnowEng,用于大规模基因组数据的可扩展知识引擎 - 总体
- 批准号:
8774407 - 财政年份:2014
- 资助金额:
$ 22.42万 - 项目类别:
KnowEng, a Scalable Knowledge Engine for Large-Scale Genomic Data-OVERALL
KnowEng,用于大规模基因组数据的可扩展知识引擎 - 总体
- 批准号:
8935854 - 财政年份:2014
- 资助金额:
$ 22.42万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.42万 - 项目类别:
Continuing Grant