Cellular and Molecular Identification of the Breathing Pacemaker Neurons

呼吸起搏器神经元的细胞和分子鉴定

基本信息

  • 批准号:
    9212609
  • 负责人:
  • 金额:
    $ 38.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-16 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary There are two critical pacemakers for life: the cardiac pacemaker and the breathing pacemaker, the preBötzinger Complex (preBötC). The preBötC is a cluster of ~3000 neurons in the brainstem that are cyclically active, with each burst of activity initiating a breath. In contrast to the cardiac pacemaker, the molecular and cellular basis of breathing rhythm generation remains unknown, as do diseases associated with it, such as central sleep apnea and sudden infant death. The prevailing model of preBötC rhythm generation, called the `group-pacemaker' model, proposes that each breath is triggered by an emergent preBötC network phenomena. An important assumption of this model is that there are not dedicated breath-initiating neurons. However, based on the observed variety of preBötC neuron firing patterns, including ones that fire just before each breath (pre-inspiratory), and the unexpected molecular and functional diversity of the preBötC neurons I discovered during my Ph.D., I hypothesize that, as in the heart, there are specific neurons that initiate each breath, breathing pacemaker neurons, and propose to identify and characterize them in this research proposal. As a UCSF Sandler Fellow and recipient of the Early Independence Award, I plan to first comprehensively map preBötC cell types with single cell gene expression analysis and identify candidate breathing pacemaker neurons by their expression of the same ion channels important for cardiac pacemaking. Additionally, I plan identify candidate breath-initiating neurons by their anticipated activity during breathing (pre-inspiratory) and their autonomous, rhythmic activity in vitro (pacemaker activity). Lastly, I will identify candidate pacemakers by their proposed connectivity to ~175 preBötC neurons I identified in my Ph.D. that receive breathing pacemaker activity. I predict that these three independent approaches will converge on the same preBötC subtypes, the presumed breathing pacemaker neurons and I will then use intersectional genetic strategies to test if the identified neurons have breathing pacemaker properties: autonomous rhythmic activity, pre-inspiratory activity, ability to initiate a breath, and requirement for breathing. The molecular and functional identification of respiratory pacemaker neurons will be a transformative discovery, leading to the eventual resolution of how respiratory rhythms and arrhythmias, some of the most deadly diseases in infants, are generated. This mechanistic understanding of breathing rhythm generation will provide an avenue to develop pharmacological approaches to control ventilation, which would impact multiple medical fields, especially neonatology and critical care medicine. In my recent Ph.D. work, I have demonstrated extraordinary molecular diversity within the preBötC and demonstrated that small numbers of molecularly distinct preBötC cell types have highly specific functions in the breathing behavior. I am poised to continue this dissection with the objective of identifying the core neurons that initiate a breath and control the pace of breathing.
项目摘要 生命中有两个关键的起搏器:心脏起搏器和呼吸起搏器,即 Prebötzinger复合体(PrebötC)。PrebötC是脑干中约3000个神经元的簇,它们是 周期性活动,每一次活动爆发都会引发一次呼吸。与心脏起搏器相比, 呼吸节律产生的分子和细胞基础仍不清楚,与之相关的疾病也是如此 如中枢性睡眠呼吸暂停和婴儿猝死。PrebötC节奏生成的流行模式, 他提出,每一次呼吸都由一个紧急的PrebötC网络触发 现象。这个模型的一个重要假设是,没有专门启动呼吸的神经元。 然而,根据观察到的PrebötC神经元放电模式的变化,包括前一次放电的模式 每一次呼吸(吸气前),以及PrebötC神经元出人意料的分子和功能多样性 在我博士期间发现的,我假设,就像在心脏中一样,有特定的神经元启动每个 呼吸,呼吸起搏器神经元,并建议在这项研究中识别和表征它们 求婚。作为加州大学桑德勒分校的研究员和早期独立奖的获得者,我计划首先 用单细胞基因表达分析全面定位PrebötC细胞类型并确定候选细胞 呼吸起搏器神经元通过其表达的相同离子通道对心脏起搏起重要作用。 此外,我计划通过呼吸过程中预期的活动来识别候选的呼吸启动神经元。 (吸气前)和体外自主、有节奏的活动(起搏器活动)。最后,我将确定 候选起搏器通过与我在博士学位中确定的~175个PrebötC神经元的连接来实现 接受呼吸起搏器活动。我预测,这三种独立的方法将汇聚在 相同的PrebötC亚型,假定的呼吸起搏神经元和我将使用交叉性遗传 测试识别的神经元是否具有呼吸起搏器特性的策略:自主节律活动, 吸气前活动、开始呼吸的能力和呼吸的要求。分子和功能 识别呼吸起搏器神经元将是一项革命性的发现,最终导致 呼吸节律和心律失常是婴儿中一些最致命的疾病 已生成。这种对呼吸节律产生的机械性理解将提供一条发展的途径 控制通风的药理学方法,这将影响多个医学领域,特别是 新生儿学和重症监护医学。在我最近的博士工作中,我展示了非凡的分子 PrebötC内的多样性,并证明了少量分子上不同的PrebötC细胞类型 在呼吸行为中有非常特殊的功能。我准备继续这一解剖,与 目的识别启动呼吸和控制呼吸节奏的核心神经元。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Yackle其他文献

Kevin Yackle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Yackle', 18)}}的其他基金

Utilizing opioid receptor expression to identify the neurons and molecules responsible for opioid respiratory depression and basal breathing.
利用阿片受体表达来识别负责阿片类呼吸抑制和基础呼吸的神经元和分子。
  • 批准号:
    10701824
  • 财政年份:
    2022
  • 资助金额:
    $ 38.38万
  • 项目类别:
Hierarchy of the vocalization motor patterning circuits
发声运动模式电路的层次结构
  • 批准号:
    10446346
  • 财政年份:
    2022
  • 资助金额:
    $ 38.38万
  • 项目类别:
Determination of the motor patterning system for murine vocalizations with breathing
小鼠呼吸发声运动模式系统的测定
  • 批准号:
    10593984
  • 财政年份:
    2022
  • 资助金额:
    $ 38.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了