High Throughput Mechanical Modulatory Assay for Breast Cancer Drug Testing
用于乳腺癌药物测试的高通量机械调节测定
基本信息
- 批准号:9187059
- 负责人:
- 金额:$ 18.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:Antineoplastic AgentsAntitumor Drug Screening AssaysArchitectureAtomic Force MicroscopyAttitudeBehaviorBiochemicalBiological AssayBiomechanicsBlood VesselsBreastBreast Cancer CellCancer BiologyCancer CenterCancer cell lineCategoriesCell LineCellsCharacteristicsChemicalsClinical TrialsComplexConfocal MicroscopyCuesCytoskeletonDiseaseDisease ManagementDistantEngineeringEventF-ActinFRAP1 geneFluorescenceGeometryGoalsHomeostasisHumanImmunofluorescence ImmunologicIn VitroLabelLeadLeftLengthLifeLinkMalignant NeoplasmsMechanicsMethodsMicrofluidic MicrochipsMicrofluidicsMicrotubule StabilizationMicrotubule stabilizing agentMicrotubulesNanotechnologyNeoplasm MetastasisNormal CellOutcomes ResearchPI3K/AKTPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPharmacotherapyPhasePhysiciansPhysiologicalPreclinical Drug EvaluationPrimary NeoplasmProcessPropertyProto-Oncogene Proteins c-aktReducing AgentsRelaxationResearchResistanceRoleSamplingScientistSiteStressTestingTherapeutic AgentsTissuesTranslatingVirginiaWorkbasebehavioral responsecancer biomarkerscancer cellcancer diagnosiscell behaviorcell growthchemotherapeutic agentchemotherapycollegeconstrictiondrug candidatedrug developmentdrug sensitivityhigh throughput screeninghuman subjectimage processingin vivolymphatic circulationmalignant breast neoplasmmicrochipmigrationneoplastic celloncologyoutcome forecastresponsetargeted treatmenttaxanetreatment responsetumorviscoelasticity
项目摘要
Dynamic stress microenvironments can modulate the biomechanics of cells resulting in distinctly different
signatures for normal and caner cells. The proposed research aims at analyzing the biophysical changes
occurring in breast cells when they are excited under repetitive forces. In this proposal, we plan to expose cells
to sequential deformations and to identify a more comprehensive biomechanical marker for cancer diagnosis,
prognosis, and treatment. The proposed “mechanical modulatory signatures” result from changes in the cell
velocity as it traverses through multiple constriction regions and can hypothetically predict the metastatic
potential and drug responsiveness of breast cancer cells. Our previous work with atomic force microscopy and
microfluidic chips reveal that breast cancer cells are softer and more fluidic than their healthy counterparts.
Moreover, cancer cells demonstrate strain-softening behavior while normal cells display strain-stiffening or less
softening attitude. Our research outcome will have substantial impact on breast cancer biology and drug
development as it implies that cancer cells as they leave their original site can become softer by squeezing
through pores to reach to blood vessels and metastasize while normal cells show more resistance and hence
their migration slows down and potentially stops. Aim 1 is to develop a high throughput microfluidic chip and the
corresponding fluidic and image processing interfaces to analyze the mechanical modulatory signature of single
cells as they pass through multiple constrictions. Both normal and cancer cell lines and primary cells will be used.
Different constriction architectures will be explored by varying the overall channel length and the relaxation
regions between two subsequent constriction regions. Upon successful accomplishment of this phase of the
project, we will realize a high throughput assay enabling the biomechanical analysis of about 50,000 cells per
minute. The bioassays will be used to discover if there are unique modulatory signatures for each enlisted cell
category (non-invasive, moderately invasive, and highly-invasive) that can be used to distinguish them and how
these signatures are related to the constriction architecture. Aim 2 will be to assess the role of chemotherapy
agents on cell biomechanical signatures and their corresponding cytoskeletal architectures. Aim 2 is a
fundamental study defining the impact of microtubulin disrupting drugs on the mechanics of living breast cells.
Both anti-cancer microtubulin stabilizer and destabilizer drugs will be used and their effect on biomechanical
modulatory signatures of cell lines and primary cells will be determined. This aim will identify if cell mechanical
signatures have changed upon drug treatment and if cell softening/stiffening observed due to cyclic deformations
have altered and to which degree.
动态应力微环境可以调节细胞的生物力学,从而导致明显不同的细胞生物学特性。
正常细胞和癌细胞的信号这项研究的目的是分析生物物理变化
当乳腺细胞受到反复的力的刺激时就会发生这种情况。在这个提案中,我们计划暴露细胞
连续变形和识别用于癌症诊断的更全面的生物力学标记,
预后和治疗。所提出的“机械调节信号”是由细胞内的变化引起的。
当它穿过多个缩窄区域时的速度,并且可以假设地预测转移性肿瘤。
乳腺癌细胞的潜力和药物反应性。我们以前的工作与原子力显微镜和
微流控芯片显示,乳腺癌细胞比健康细胞更柔软,更具流动性。
此外,癌细胞显示应变软化行为,而正常细胞显示应变硬化或更少
软化态度我们的研究成果将对乳腺癌生物学和药物产生重大影响
发展,因为它意味着癌细胞在离开其原始部位时可以通过挤压变得更软
通过毛孔到达血管并转移,而正常细胞表现出更多的抵抗力,
它们的迁移速度减慢甚至可能停止。目的一是研制高通量微流控芯片,
相应的流体和图像处理接口,以分析单个细胞的机械调制特征,
细胞通过多处收缩时的收缩。将使用正常和癌细胞系以及原代细胞。
不同的收缩结构将通过改变总通道长度和松弛来探索。
两个连续收缩区域之间的区域。在成功完成这一阶段的工作后,
项目,我们将实现一个高通量的分析,使生物力学分析约50,000细胞,
一下生物测定将被用来发现是否有独特的调制签名为每个应征细胞
可用于区分它们的类别(非侵入性、中度侵入性和高度侵入性)以及如何区分
这些特征与收缩结构有关。目的2将评估化疗的作用
药物对细胞生物力学特征及其相应的细胞骨架结构的影响。目标2是一个
定义微管蛋白破坏药物对活乳腺细胞力学影响的基础研究。
将使用抗癌微管蛋白稳定剂和去稳定剂药物,并研究它们对生物力学的影响。
将确定细胞系和原代细胞的调节特征。这一目标将确定细胞机械
药物处理后特征发生变化,如果由于循环变形观察到细胞软化/硬化,
改变了,改变到什么程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masoud Agah其他文献
Masoud Agah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masoud Agah', 18)}}的其他基金
Intelligent Wearable Analyzer for Vapor Exposure (iWAVE) in Transportation Sector
交通运输领域的智能可穿戴蒸汽暴露分析仪 (iWAVE)
- 批准号:
10357551 - 财政年份:2019
- 资助金额:
$ 18.68万 - 项目类别:
Intelligent Wearable Analyzer for Vapor Exposure (iWAVE) in Transportation Sector
交通运输领域的智能可穿戴蒸汽暴露分析仪 (iWAVE)
- 批准号:
9448740 - 财政年份:2019
- 资助金额:
$ 18.68万 - 项目类别:
Intelligent Wearable Analyzer for Vapor Exposure (iWAVE) in Transportation Sector
交通运输领域的智能可穿戴蒸汽暴露分析仪 (iWAVE)
- 批准号:
10418601 - 财政年份:2019
- 资助金额:
$ 18.68万 - 项目类别:
A Miniaturized GC with MEMS-Enabled Selective Preconcentration for Monitoring Exp
具有 MEMS 选择性预富集功能的小型气相色谱仪,用于监测实验
- 批准号:
8359250 - 财政年份:2012
- 资助金额:
$ 18.68万 - 项目类别:














{{item.name}}会员




