SEPSIS-INDUCED RED CELL DYSFUNCTION (SIRD)
脓毒症引起的红细胞功能障碍 (SIRD)
基本信息
- 批准号:9069918
- 负责人:
- 金额:$ 78.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffinityAntioxidantsBindingBiochemicalBiochemistryBiological AssayBiologyBloodBlood VesselsBlood flowCardiac OutputCell AdhesionCell AggregationCell EnergeticsCell physiologyCharacteristicsChildChildhoodChronicClinical DataComorbidityCouplingCritical CareCuesCysteineDefectDevelopmentDiabetes MellitusDorsalElementsEndotheliumEnergy MetabolismErythrocytesEvaluationEvolutionFree RadicalsFunctional disorderGlucoseGoalsHealthHemeHemoglobinIncubatedInflammationInjuryKidney FailureLinkLipidsLungMedicineMembraneMembrane ProteinsMetabolismModelingModificationMultiple Organ FailureNational Institute of Child Health and Human DevelopmentNetwork InfrastructureNitric OxideNude MiceOrganOrgan failureOutcomeOxidantsOxidation-ReductionPerfusionPharmaceutical ChemistryPhenotypePhysiologicalProcessProductionPurinesReactive Oxygen SpeciesRecruitment ActivityRegional Blood FlowReporterResearchRespirationRheologyRoleSepsisSepsis SyndromeSignal TransductionStressStructureStudy SubjectSulfhydryl CompoundsSuperoxide DismutaseSystemTestingTissuesVascular DiseasesVascular Systembasebiophysical analysiscell injurycohortgenetic regulatory proteinin vivo Modelintravital imagingintravital microscopymimeticsnovelnovel therapeuticsoptical imagingsepticskeletalsmall moleculetargeted treatmenttranslational approach
项目摘要
DESCRIPTION (provided by applicant): The goals of this project are to: (1) fully characterize SIRD as a distinct form of organ failure impairing O2 delivery in sepsis, (2) elucidate SIRD's role
in multiple organ failure (MOF) progression, and (3) evaluate a mechanism-based therapy targeted to SIRD pathobiology. In sepsis, a number of RBC defects have been (individually) described: altered O2 affinity, membrane deformability, RBC aggregation and adhesion, as well as dysregulated RBC-based nitric oxide (NO) processing. We suggest that these defects comprise a unique class of organ failure (which we term SiRD) that disables transport of O2 from lungs to tissue. Based upon our preliminary findings, we propose the novel hypothesis that in sepsis, energetic support of RBC antioxidant systems fails, with SiRD arising consequent to unquenched reactive oxygen species (ROS) generated in the course of hemoglobin O2 binding/release. As such, by critically impairing O2 delivery (by limiting both delivery of RBCs to
tissue [e.g. flow] and release of O2 from delivered RBCs), SiRD exacerbates dysoxia and MOF progression. We propose a mechanistic 'reverse translational' approach to test this hypothesis in a comprehensively phenotyped cohort of children with severe sepsis (enabling us to study subjects lacking comorbidities which also impair RBC function, e.g. diabetes, renal failure, etc.).
We will study children in the "Inflammation Phenotypes in Pediatric Sepsis Induced Multiple Organ Failure" (PHENOMS Trial [GM108618], which will be conducted by the NICHD Collaborative Pediatric Critical Care Research Network [CPCCRN]). This will enable us to leverage the established CPCCRN infrastructure and the detailed phenotype and outcome evaluation of the PHENOMS cohort so that we may link SiRD to progression of sepsis syndromes, MOF evolution, and to outcome. We will structure our approach by pursuing the following Specific Aims: SA1. Define sepsis-induced biochemical alterations to RBCs that influence O2 delivery. PHENOMS subjects' RBCs will be studied in ex vivo assay platforms, organ bioassays and in vivo models to quantitate defects in (and efficacy of SOD mimetics in restoring): O2 binding/delivery as well as control of vascular tone and blood flow. SA2 Define sepsis-induced biophysical alterations to RBCs that influence O2 delivery. As above, subjects' RBCs will be studied employing state of the art biophysical analysis (for membrane deformability, RBC aggregation and endothelial adhesion) and intravital microscopy to quantitate defects in (and efficacy of SOD mimetics in restoring): RBC transit through vascular channels and adhesion to activated endothelium. SA3 Characterize sepsis-induced alterations in RBC energy metabolism, antioxidant systems and oxidative injury. Study subjects' RBCs will be subjected to controlled oxidative loading to quantitate the dynamic range in (and efficacy of SOD mimetics in restoring): glycolytic flux (1H NMR analysis of lactate isotopomers), redox poise in antioxidant systems, and (c) oxidative injury to membrane and proteins.
描述(由申请人提供):本项目的目标是:(1)充分表征SIRD作为脓毒症中器官衰竭损害O2输送的独特形式,(2)阐明SIRD的作用
在多器官衰竭(MOF)进展中,和(3)评价靶向SIRD病理生物学的基于机制的治疗。在脓毒症中,已经(单独)描述了许多RBC缺陷:改变的O2亲和力,膜变形性,RBC聚集和粘附,以及基于RBC的一氧化氮(NO)处理失调。我们认为,这些缺陷包括一类独特的器官衰竭(我们称之为SiRD),使O2从肺部运输到组织。基于我们的初步研究结果,我们提出了一个新的假设,即在败血症,红细胞抗氧化系统的有力支持失败,与SiRD随之产生的未淬灭的活性氧(ROS)在血红蛋白O2结合/释放过程中产生的。因此,通过严重损害O2的输送(限制RBC的输送,
组织[例如流动]和从递送的RBC释放O2),SiRD加剧了缺氧和MOF进展。我们提出了一种机械的“反向翻译”方法,以测试这一假设在一个全面的表型队列的儿童严重脓毒症(使我们能够研究受试者缺乏合并症,也损害红细胞功能,如糖尿病,肾功能衰竭等)。
我们将在“儿科脓毒症诱导的多器官衰竭中的炎症表型”(PHENOMS试验[GM 108618],将由NICHD协作儿科重症监护研究网络[CPCCRN]进行)中研究儿童。这将使我们能够利用已建立的CPCCRN基础设施和PHENOMS队列的详细表型和结局评价,以便我们可以将SiRD与脓毒症综合征的进展、MOF演变和结局联系起来。我们将通过追求以下具体目标来构建我们的方法:SA 1。定义败血症诱导的红细胞生化改变,影响O2输送。将在离体测定平台、器官生物测定和体内模型中研究PHENOMS受试者的RBC,以定量以下方面的缺陷(和SOD模拟物在恢复中的功效):O2结合/递送以及血管张力和血流的控制。SA 2定义脓毒症诱导的红细胞生物物理学改变,影响O2输送。如上所述,将采用最新技术水平的生物物理分析(用于膜变形性、RBC聚集和内皮粘附)和活体显微镜检查来研究受试者的RBC,以定量以下缺陷(和SOD模拟物在恢复中的功效):RBC通过血管通道的转运和与活化内皮的粘附。SA 3表征败血症诱导的RBC能量代谢、抗氧化系统和氧化损伤的改变。将对研究受试者的RBC进行受控的氧化负荷,以定量以下方面的动态范围(以及SOD模拟物在恢复中的功效):糖酵解通量(乳酸盐同位素异构体的1H NMR分析)、抗氧化系统中的氧化还原平衡,以及(c)对膜和蛋白质的氧化损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALLAN DOCTOR其他文献
ALLAN DOCTOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALLAN DOCTOR', 18)}}的其他基金
Red blood cell ATP export and transfusion in sepsis
脓毒症中红细胞 ATP 输出和输血
- 批准号:
10584768 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
ErythroMer: Nanoscale Bio-Synthetic Red Cell Substitute
ErythroMer:纳米级生物合成红细胞替代品
- 批准号:
9347784 - 财政年份:2017
- 资助金额:
$ 78.8万 - 项目类别:
SEPSIS-INDUCED RED CELL DYSFUNCTION (SIRD)
脓毒症引起的红细胞功能障碍 (SIRD)
- 批准号:
9229050 - 财政年份:2015
- 资助金额:
$ 78.8万 - 项目类别:
SEPSIS-INDUCED RED CELL DYSFUNCTION (SIRD)
脓毒症引起的红细胞功能障碍 (SIRD)
- 批准号:
8803196 - 财政年份:2015
- 资助金额:
$ 78.8万 - 项目类别:
SEPSIS-INDUCED RED CELL DYSFUNCTION (SIRD)
脓毒症引起的红细胞功能障碍 (SIRD)
- 批准号:
9273245 - 财政年份:2015
- 资助金额:
$ 78.8万 - 项目类别:
Erythrocyte Nitrosothiol Flux and Vasoregulation in Lung
红细胞亚硝基硫醇通量和肺血管调节
- 批准号:
6710786 - 财政年份:2004
- 资助金额:
$ 78.8万 - 项目类别:
Erythrocyte Nitrosothiol Flux and Vasoregulation in Lung
红细胞亚硝基硫醇通量和肺血管调节
- 批准号:
7350865 - 财政年份:2004
- 资助金额:
$ 78.8万 - 项目类别:
Erythrocyte Nitrosothiol Flux and Vasoregulation in Lung
红细胞亚硝基硫醇通量和肺血管调节
- 批准号:
6839438 - 财政年份:2004
- 资助金额:
$ 78.8万 - 项目类别:
Erythrocyte Nitrosothiol Flux and Vasoregulation in Lung
红细胞亚硝基硫醇通量和肺血管调节
- 批准号:
7250307 - 财政年份:2004
- 资助金额:
$ 78.8万 - 项目类别:
Erythrocyte Nitrosothiol Flux and Vasoregulation in Lung
红细胞亚硝基硫醇通量和肺血管调节
- 批准号:
7009990 - 财政年份:2004
- 资助金额:
$ 78.8万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 78.8万 - 项目类别:
Continuing Grant














{{item.name}}会员




