3D micro-addressable tissue models to understand spatiotemporal heterogeneity in transcriptional regulation
3D 微可寻址组织模型,用于了解转录调控中的时空异质性
基本信息
- 批准号:8935781
- 负责人:
- 金额:$ 22.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnti-Inflammatory AgentsAnti-inflammatoryAntibiotic ResistanceApoptoticBacterial Antibiotic ResistanceBiocompatible MaterialsBiologyBlood VesselsBrain NeoplasmsCell CountCell Culture TechniquesCell SurvivalCellsCellular StressCellular Stress ResponseCharacteristicsChemicalsClinicalComplexDegenerative DisorderDevelopmentEngineeringEpigenetic ProcessEventExhibitsExposure toExtracellular MatrixGenesGeneticGenetic TranscriptionGoalsHealthHeterogeneityHydrogelsHypoxiaImageIn VitroInjuryLeadMalignant - descriptorMalignant NeoplasmsMeasurementMeasuresMedicineMetabolismMethodsMicrobial BiofilmsMicrofluidicsModelingMolecularMotionNF-kappa BOpticsOxygenPharmaceutical PreparationsPhenotypePhysiologicalPlayPopulationProcessRegulationResearchResolutionRoleSample SizeSamplingSignal TransductionStagingStem cellsTechniquesTechnologyTestingTissue EngineeringTissue ModelTissuesTranscriptional RegulationTumor TissueValidationVariantWorkbasebiological adaptation to stresscellular engineeringchemotherapychromatin immunoprecipitationcytotoxicdrug distributionepigenetic regulationflexibilityin vivoinsightintercellular communicationnovelresearch studyresponsespatiotemporalstem cell therapytooltumor
项目摘要
DESCRIPTION: 3D micro-addressable tissue models to understand spatiotemporal heterogeneity in transcriptional regulation Advanced In vitro cell culture platforms have the potential to reveal the complex transcriptional and epigenetic regulation of cellular stress response and adaptation dynamics, which is challenging or impossible to study in vivo due to the inherent complexity of animal models, inability to experimentally manipulate the vast majority of tissue parameters, and a lack of high spatiotemporal resolution measurement techniques. Because of advances in tissue engineering and biomaterials, these platforms furthermore provide an ever-closer approximation of the physiological tissue microenvironment, reducing the need for in vivo experiments at earlier stages of research. Such studies will have important applications in our understanding of antibiotic resistance, personalized cancer medicine, and the development of effective and safe stem cell therapies. However, illustration of the complex molecular mechanisms behind the phenotype changes has been highly limited, and enabling tools to study the dynamics of such processes at high spatiotemporal resolution will provide new windows into previously inaccessible biology. While micro fabrication strategies have enabled well-defined heterogeneous model tissues, broad-spectrum genetic or epigenetic analysis of cells residing within micro scale tissue niches has not been possible. Our broad hypothesis is that spatiotemporal heterogeneity at micron scales impacts cellular stress response via transcriptional mechanisms, and that expanding the capabilities of physiologically relevant in vitro platforms will provide a powerful, broad spectrum, high-resolution tool to understand these dynamics. We will work towards our goals by pursuing two synergistic paths: 1) build on our prior microfluidic vascular tissue models to develop a brain tumor tissue mimic exhibiting the key chemo-mechano-cellular features regulating drug distribution, metabolism and chemoresistance development in vivo, and 2) extend our ability to analyze transcription level regulation via chromatin immunoprecipitation (ChIP), which we have already demonstrated on as few as 50 cells, to measure the role played by NF-kB in the interplay between spatiotemporal oxygen variations and cytotoxic stress response. The capabilities developed in this project will greatly enhance the utility of 3D cell culture models, and will provide access to the transcriptional machinery underlying stress response in a broad range of contexts.
产品说明:先进的体外细胞培养平台具有揭示细胞应激反应和适应动力学的复杂转录和表观遗传调节的潜力,由于动物模型的固有复杂性,无法实验操作绝大多数组织参数,以及缺乏高时空分辨率测量技术。由于组织工程和生物材料的进步,这些平台进一步提供了更接近生理组织微环境的近似,减少了在研究早期阶段进行体内实验的需要。这些研究将在我们理解抗生素耐药性、个性化癌症药物以及开发有效和安全的干细胞疗法方面具有重要应用。然而,表型变化背后的复杂分子机制的说明一直非常有限,使工具,以高时空分辨率研究这些过程的动态将提供新的窗口,以前无法进入生物学。虽然微制造策略已经实现了良好定义的异质模型组织,但对驻留在微尺度组织小生境内的细胞的广谱遗传或表观遗传分析还不可能。我们的广泛假设是,微米尺度的时空异质性通过转录机制影响细胞应激反应,并且扩展生理相关的体外平台的能力将提供一个强大的,广谱的,高分辨率的工具来理解这些动态。我们将通过以下两条协同增效的道路来实现我们的目标:1)建立在我们现有的微流体血管组织模型上,以开发脑肿瘤组织模拟物,其表现出调节体内药物分布、代谢和化学抗性发展的关键化学-机械-细胞特征,以及2)扩展我们通过染色质免疫沉淀(ChIP)分析转录水平调节的能力,我们已经在少至50个细胞上证明了这一点,以测量NF-kB在时空氧变化和细胞毒性应激反应之间的相互作用中所起的作用。在这个项目中开发的能力将大大提高3D细胞培养模型的实用性,并将提供在广泛的背景下的应激反应的转录机制。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D Microtissue Models to Analyze the Effects of Ultralow Dose LPS on Vascular Sprouting Dynamics in the Tumor Microenvironment.
3D 微组织模型分析超低剂量 LPS 对肿瘤微环境中血管萌芽动力学的影响。
- DOI:10.1021/acsbiomaterials.6b00800
- 发表时间:2018
- 期刊:
- 影响因子:5.8
- 作者:Cox,MeganC;Kuliasha,AndreaS;Li,Liwu;Verbridge,ScottS
- 通讯作者:Verbridge,ScottS
Endothelial cell sensing, restructuring, and invasion in collagen hydrogel structures.
- DOI:10.1039/c5ib00207a
- 发表时间:2015-11
- 期刊:
- 影响因子:0
- 作者:Hosseini Y;Agah M;Verbridge SS
- 通讯作者:Verbridge SS
Effects of Culture Condition on Epigenomic Profiles of Brain Tumor Cells
- DOI:10.1021/acsbiomaterials.9b00161
- 发表时间:2019-03-01
- 期刊:
- 影响因子:5.8
- 作者:Cox, Megan C.;Deng, Chengyu;Verbridge, Scott S.
- 通讯作者:Verbridge, Scott S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott S Verbridge其他文献
Scott S Verbridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott S Verbridge', 18)}}的其他基金
3D micro-addressable tissue models to understand spatiotemporal heterogeneity in transcriptional regulation
3D 微可寻址组织模型,用于了解转录调控中的时空异质性
- 批准号:
8823915 - 财政年份:2014
- 资助金额:
$ 22.08万 - 项目类别:
相似海外基金
Development of small molecule inhibitors as anti-inflammatory agents and antidotes for arsenicals
开发作为抗炎剂和砷解毒剂的小分子抑制剂
- 批准号:
10727507 - 财政年份:2023
- 资助金额:
$ 22.08万 - 项目类别:
Discovery of New Anti-Inflammatory Agents to Treat COPD
发现治疗慢性阻塞性肺病的新型抗炎药
- 批准号:
9194162 - 财政年份:2016
- 资助金额:
$ 22.08万 - 项目类别:
Synthesis of anti-inflammatory agents and their structure-activity relationships studies
抗炎药的合成及其构效关系研究
- 批准号:
496858-2016 - 财政年份:2016
- 资助金额:
$ 22.08万 - 项目类别:
University Undergraduate Student Research Awards
NAAA Inhibitors as Anti-inflammatory Agents, Phase II
NAAA 抑制剂作为抗炎剂,II 期
- 批准号:
9201955 - 财政年份:2015
- 资助金额:
$ 22.08万 - 项目类别:
Novel flavonoids as anti-inflammatory agents in alcoholism
新型黄酮类化合物作为酒精中毒的抗炎剂
- 批准号:
8251289 - 财政年份:2014
- 资助金额:
$ 22.08万 - 项目类别:
TLR-7 Agonists as Targeted Anti-inflammatory Agents in Arthritis
TLR-7 激动剂作为关节炎的靶向抗炎药
- 批准号:
8302750 - 财政年份:2012
- 资助金额:
$ 22.08万 - 项目类别:
Design and in vivo delivery of novel anti-inflammatory agents
新型抗炎剂的设计和体内递送
- 批准号:
267940 - 财政年份:2012
- 资助金额:
$ 22.08万 - 项目类别:
Operating Grants
Development of inlammasome inhibitors to be used as anti-inflammatory agents
开发用作抗炎剂的inlammasome抑制剂
- 批准号:
8403458 - 财政年份:2012
- 资助金额:
$ 22.08万 - 项目类别:
Development of inlammasome inhibitors to be used as anti-inflammatory agents
开发用作抗炎剂的inlammasome抑制剂
- 批准号:
8549297 - 财政年份:2012
- 资助金额:
$ 22.08万 - 项目类别:
TLR-7 Agonists as Targeted Anti-inflammatory Agents in Arthritis
TLR-7 激动剂作为关节炎的靶向抗炎药
- 批准号:
8472443 - 财政年份:2012
- 资助金额:
$ 22.08万 - 项目类别: