Low Cost Automated Ultrasound for Breast Cancer Detection and Diagnosis
用于乳腺癌检测和诊断的低成本自动化超声
基本信息
- 批准号:9315475
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Age-YearsAlgorithmsBenignBiopsyBreastBreast Cancer DetectionBreast Fibrocystic DiseaseCaliforniaCancer DiagnosticsCancer EtiologyCaregiversCaringCellular PhoneCessation of lifeClinicalClinical ResearchClinical TrialsClinical effectivenessCollaborationsComputer softwareComputer-Assisted DiagnosisComputersCountryCystDetectionDeveloping CountriesDevicesDiagnosisDiagnosticDigital Signal ProcessingDiseaseDoctor of PhilosophyEffectivenessEnvironmentFeedbackFibroadenomaGoalsHealthHealthcareImageImage EnhancementIncidenceInvestigationLeftLesionLifeLoveMalignant - descriptorMalignant NeoplasmsMammographyMass in breastMatched GroupMedicalMedicineMethodsMexicoOperative Surgical ProceduresPalpablePerformancePhaseProbabilityRadiology SpecialtyReadingResourcesSensitivity and SpecificitySpecificityStressSurgeonSystemTabletsTechnologyTrainingTriageUltrasonographyValidationWomanWorkage groupbreast cancer diagnosisbreast imagingcancer diagnosiscohortcommercializationcomputer aided detectioncostcost effectiveexperienceglobal healthhealth care deliveryimage processingimprovedlaptoplow and middle-income countriesmalignant breast neoplasmnovelnovel strategiespreclinical studyproduct developmentprofessorprogramsprospectiveradiologistscreeningtooluser-friendlyvalidation studiesyoung woman
项目摘要
DESCRIPTION (provided by applicant): Breast cancer is the most common cause of cancer death among women worldwide and the numbers are disproportionately high for women in developing countries. Developing countries demand low-cost, portable diagnostic tools that are easy to use and do not require additional professional staff to be effective. We propose a low-cost, portable, automated ultrasound device containing software to improve the image quality and provide computer-aided detection and diagnosis (CAD) to locate and distinguish between clearly benign and potentially malignant palpable breast lumps. While screening has been the focus for diagnosis in western countries, breast cancer most commonly presents in women less than 50 years of age and as a palpable lump in developing countries. The common types of breast lumps in this age group (cysts, fibroadenomas, fibrocystic change and cancer) are usually distinct on ultrasound with fewer than 10% representing malignancy in young women. Our goal is to develop a device that could be used by a local health aid to determine which breast lumps need to be biopsied because they are suspicious and which can be left alone. This would enable stressed healthcare delivery systems to focus resources on the women most likely to benefit from their efforts. In order to provide an effective tool for breast cancer triage in developing countries we propose to do the following: 1. Introduce novel algorithms for ultrasound image enhancement and computer-aided detection and diagnosis (CAD). These algorithms take advantage of temporal information available in a live ultrasound scan to determine the probability of malignancy. 2. Clinical trial in California to determine the sensitiviy and specificity of the ultrasound device. A clinical trial on a cohort group that matches the women in developing countries will determine the effectiveness of the technology. 3. Clinical trial to validate effectiveness, acceptability and feasibility of technology in an LMIC environment The clinical trial will be performed in Mexico. This work is a close collaboration with breast cancer expert and surgeon, Dr. Susan Love, breast imaging radiologist, clinical trial expert Dr. Wendie Berg, medical and software product development and commercialization expert, Christine Podilchuk, PhD, technology and commercialization expert, Professor Richard Mammone, and professor of surgery and global health medicine expert, Dr. Ben Anderson.
描述(由申请人提供):乳腺癌是全世界妇女癌症死亡的最常见原因,发展中国家妇女的死亡人数不成比例地高。发展中国家需要低成本、便携式的诊断工具,这些工具易于使用,不需要额外的专业人员就能发挥作用。我们提出了一种低成本,便携式,自动化的超声设备,包含软件,以提高图像质量,并提供计算机辅助检测和诊断(CAD),以定位和区分明确良性和潜在恶性可触及的乳腺肿块。虽然筛查一直是西方国家诊断的重点,但乳腺癌最常见于50岁以下的女性,并且在发展中国家是一个明显的肿块。在这个年龄组中常见的乳房肿块类型(囊肿,纤维腺瘤,纤维囊性变化和癌症)通常在超声上是不同的,在年轻女性中少于10%代表恶性肿瘤。我们的目标是开发一种设备,可以由当地的健康援助,以确定哪些乳房肿块需要活检,因为他们是可疑的,哪些可以留下。这将使压力很大的医疗保健提供系统能够将资源集中在最有可能从其努力中受益的妇女身上。 为了给发展中国家的乳腺癌分诊提供一个有效的工具,我们建议做以下工作:1。介绍超声图像增强和计算机辅助检测和诊断(CAD)的新算法。这些算法利用实时超声扫描中可用的时间信息来确定恶性肿瘤的概率。2.在加州进行的临床试验,旨在确定超声设备的灵敏度和特异性。在与发展中国家妇女相匹配的队列组中进行的临床试验将确定该技术的有效性。3.在LMIC环境中验证技术有效性、可接受性和可行性的临床试验临床试验将在墨西哥进行。这项工作是与乳腺癌专家和外科医生Susan Love博士、乳腺成像放射科医生、临床试验专家Wendie贝格博士、医疗和软件产品开发和商业化专家克莉丝汀Podilchuk博士、技术和商业化专家Richard Mammone教授以及外科教授和全球健康医学专家Ben安德森博士密切合作完成的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan M Love其他文献
Susan M Love的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan M Love', 18)}}的其他基金
Low Cost Automated Ultrasound for Breast Cancer Detection and Diagnosis
用于乳腺癌检测和诊断的低成本自动化超声
- 批准号:
9911937 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Low Cost Automated Ultrasound for Breast Cancer Detection and Diagnosis
用于乳腺癌检测和诊断的低成本自动化超声
- 批准号:
8789798 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
6th International Symposium on the Intraductal Approach to Breast Cancer
第六届乳腺癌导管内治疗国际研讨会
- 批准号:
7674253 - 财政年份:2009
- 资助金额:
$ 100万 - 项目类别:
5th International Symposium on the Intraductal Approach to Breast Cancer
第五届乳腺癌导管内治疗国际研讨会
- 批准号:
7276550 - 财政年份:2007
- 资助金额:
$ 100万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant